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Abstract

The intersection enumerator and the Jacobi polynomial in an ar-
bitrary genus for a binary code are introduced. Adding the weight
enumerator into our discussion, we give the explicit relations among
them and give some of their basic properties.

1 Introduction

The weight enumerator plays an important role in coding theory. Gleason [6]
initiated the applications of the weight enumerator to the invariant theory of
the finite groups and Broué-Enguehard [3] constructed modular forms from
the weight enumerators. These results were generalized to higher genera
[1, 8, 4, 16, 10]. In [15], Ozeki provided the new notion “Jacobi polynomial” of
a code. He stated that this comes out of considerations on various invariants
of codes [12, 13, 14] and on Jacobi theta-series [5]. In [11], the notion of the
intersection enumerator is given for some computations of extremal codes. In
the present paper, we discuss these polynomials in an arbitrary genus with
future applications in mind and some results in [15] are generalized to the
case in higher genera.

We shall recall the coding theory (cf. [9, 7]). In the present paper we
restrict to the binary case. Let F2 = {0, 1} be the field of two elements and
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Fn
2 the n-dimensional vector space over F2 equipped with the usual inner

product

u · v = u1v1 + · · ·+ unvn, u = (u1, . . . , un), v = (v1, . . . , vn) ∈ Fn
2 .

For v1 = (v11, . . . , v1n1) ∈ Fn1
2 , v2 = (v21, . . . , v2n2) ∈ Fn2

2 , we put

v1 ⊕ v2 = (v11, . . . , v1n1 , v21, . . . , v2n2).

We introduce an operation ◦ on Fn
2 which is given by

u ◦ v = (u1v1, . . . , unvn).

This operation satisfies the associative law (u1 ◦ u2) ◦ u3 = u1 ◦ (u2 ◦ u3).
We denote by ei1...iℓ the element of Fg

2, whose entry is 1 for the i1-,. . . , iℓ-
part and 0 otherwise. For example, e12 = (1, 1, 0) ∈ F3

2. Therefore every
non-zero element of Fg

2 can be expressed as ei1...iℓ for suitable i1, . . . , iℓ. The
zero vector in Fg

2 is denoted by e0. The weight wt(u) is the number of non-
zero coordinates of u. The intersection number u ∗ v in the sense of [15] is
wt(u ◦ v) in this paper. We denote by na(u1, . . . , ug) the number of i such
that a = (u1i, . . . , ugi) for a ∈ Fg

2.
A linear code of length n is a linear subspace of Fn

2 . We denote by C⊥

the dual code of C:

C⊥ = {u ∈ Fn
2 | u · v = 0, ∀v ∈ C}.

If C = C⊥, then C is called self-dual. If wt(u) ≡ 0 (mod 4), ∀u ∈ C, then
C is called doubly even. It is known that a self-dual and doubly even code
of length n exists if and only if n ≡ 0 (mod 8).

For a code C1 (resp. C2) of length n1 (resp. n2), we denote by C1 ⊕ C2

the direct sum of C1 and C2. In other words,

C1 ⊕ C2 = {u1 ⊕ u2 | u1 ∈ C1, u2 ∈ C2}.

The (homogeneous) weight enumerator of a code C of length n is

WC(x, y) =
∑
u∈C

xn−wt(u)ywt(u).

This is the first weight enumerator which will be defined in the next section.
The inhomogeneous weight enumerator of a code C of length n is1 WC(X) =
WC(x← 1, y ← X).

1The notation x← X means to substitute X for x.
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2 Definitions of Polynomials of Codes

We start with giving the definitions of the three different kinds of polynomials
of codes. It should be emphasized that the notion of the genus attaches to
each polynomial.

Definition 1 Let g be a positive integer and C be a code of length n.

(1) The g-th weight enumerator of C is

W
(g)
C ({xa}a∈Fg

2
) =

∑
u1,...,ug∈C

∏
a∈Fg

2

xna(u1,...,ug)
a .

(2) The g-th Jacobi polynomial of C with the reference vector v ∈ Fn
2 is

Jac(g)(C, v| {Xi}1≤i≤g, {Xk1...kℓ}2≤ℓ≤g+1
1≤k1<···<kℓ≤g+1

)

=
∑

u1,...,ug∈C

( ∏
1≤i≤g

X
wt(ui)
i

)
∏

2≤ℓ≤g+1

 ∏
1≤k1<···<kℓ≤g+1

ug+1=v

X
wt(uk1

◦···◦ukℓ
)

k1...kℓ


 .

(3) The g-th intersection enumerator of C is

I
(g)
C ({Xk1...kℓ}1≤ℓ≤g

1≤k1<···<kℓ≤g
) =

∑
u1,...,ug∈C

{ ∏
1≤ℓ≤g

( ∏
1≤k1<···<kℓ≤g

X
wt(uk1

◦···◦ukℓ
)

k1...kℓ

)}
.

When no confusion occurs, we omit the notation of variables in the poly-
nomials and write as W

(g)
C , Jac(g)(C, v), and I

(g)
C . It is well known that the

g-th weight enumerator is attracted by the number theory (cf. [3, 4, 16]).

Remark 2 (1) W
(1)
C (x0 ← 1, x1 ← X) = Jac(1)(C, 0| X1 ← X,X12) =

I
(1)
C (X1 ← X).

(2) The number of variables in each polynomial is given by

W
(g)
C : 2g,

Jac(g)(C, v): g +
(
g+1
2

)
+
(
g+1
3

)
+ · · ·+

(
g+1
g+1

)
= 2g+1 − 2,

I
(g)
C :

(
g
1

)
+
(
g
2

)
+ · · ·+

(
g
g

)
= 2g − 1.

At this point, the difference between Jac(g)(C, v) and I
(g+1)
C is that I

(g+1)
C

contains Xg+1 in its definition, whereas Jac(g)(C, v) does not.
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(3) I
(g)
C (Xi1...iℓ ← 1 for ℓ ≥ 3) is the intersection enumerator in genus g in
the sense of [11].

We shall give the explicit forms for g = 1, 2. For g = 1, we have

Jac(1)(C, v| X1 ← X,X12 ← Z) =
∑
u∈C

Xwt(u)Zwt(u◦v).

This is the Jacobi polynomial of binary codes dealt in [15]. For g = 2, we
have

Jac(2)(C, v) =
∑

u1,u2∈C

X
wt(u1)
1 X

wt(u2)
2 X

wt(u1◦u2)
12 X

wt(u1◦u3)
13 X

wt(u2◦u3)
23 X

wt(u1◦u2◦u3)
123

where u3 = v in the right-hand side.

3 Basic Results

The Jacobi polynomial Jac(g)(C, v) has the following expansion2.

Jac(g)(C, v) =
∑
{mi}

{rk1...kℓ}

b({mi}1≤i≤g, {rk1...kℓ}2≤ℓ≤g+1
1≤k1<···<kℓ≤g+1

)

( ∏
1≤i≤g

Xmi
i

)

×

{ ∏
2≤ℓ≤g+1

( ∏
1≤k1<···<kℓ≤g+1

X
rk1...kℓ
k1...kℓ

)}
where b({mi}1≤i≤g, {rk1...kℓ}2≤ℓ≤g+1

1≤k1<···<kℓ≤g+1
) is the number of (u1, . . . , ug) ∈ Cg

satisfying{
wt(ui) = mi (1 ≤ i ≤ g),

wt(uk1 ◦ · · · ◦ ukℓ) = rk1...kℓ (2 ≤ ℓ ≤ g + 1, 1 ≤ k1 < · · · < kℓ ≤ g + 1).

Here we consider as ug+1 = v. We have a trivial inequality wt(uj1 ◦
· · · ◦ ujℓ+1

) ≤ wt(ui1 ◦ · · · ◦ uiℓ) for {i1, . . . , iℓ} ⊂ {j1, . . . , jℓ, jℓ+1}. From this
observation, we have

2If we use the notation ri = wt(ui) instead of mi, some parts of the descriptions below
might be simplified, however, we did not take that way because we need to emphasize
the distinction between m∗ and r∗. Also we respect the usage of the notation in Ozeki’s
original paper [15].
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Proposition 3 If there exists some pair {i1, . . . , iℓ} ⊂ {j1, . . . , jℓ, jℓ+1} for
some ℓ ≥ 1 such that

mi1 < rj1j2 for ℓ = 1

or
ri1...iℓ < rj1...jℓjℓ+1

for ℓ ≥ 2,

then we have b({mi}, {ri1...iℓ}) = 0.

Here we are assuming the convention ug+1 = v and rg+1 = wt(ug+1).

Proposition 4 Let C be a code of length n which contains all one vector
1 and Jac(g)(C, v) =

∑
b({mi}, {rk1...kℓ})

∏
Xmi

i

∏
X

rk1...kℓ
k1...kℓ

be the g-th Jacobi
polynomial of C with the reference vector v of weight k. Fix j (1 ≤ j ≤ g).
Then it holds

b({mi}, {rk1...kℓ}) = b({m′
i}, {r′k1...kℓ})

where

m′
i =

{
mi if i ̸= j,

n−mj otherwise,

and

r′k1...kℓ =

{
rk1...kℓ if i ̸∈ {k1, . . . , kℓ},
rk1...̂i...kℓ − rk1...i...kℓ otherwise,

and î means to exclude i.

Proof. The map (u1, . . . , ui, . . . , ug) 7→ (u1, . . . , 1 − ui, . . . , ug) is a bijec-
tion from {(u1, . . . , ug) ∈ Cg | wt(ui1 ◦ · · · ◦ uiℓ) = rk1...kℓ ,∀k1, . . . , kℓ} to
{(u1, . . . , ug) ∈ Cg | wt(ui1 ◦ · · · ◦ uiℓ) = r′k1...kℓ , ∀k1, . . . , kℓ}. This completes
the proof of Proposition 4.

Making successive use of this proposition, we get, for g = 2,

b({m1,m2}, {r12, r13, r23, r123})
= b({n−m1,m2}, {m2 − r12, k − r13, r23, r23 − r123})
= b({m1, n−m2}, {m1 − r12, r13, k − r23, r13 − r123})
= b({n−m1, n−m2}, {n−m1 −m2 + r12, k − r13, k − r23, k − r13 − r23 + r123}).

Next, we shall consider the reduction of the intersection enumerator to
the inhomogeneous weight enumerator.
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Proposition 5 (1) I
(g+1)
C (Xk1...kℓ ← 1 for ℓ ≥ 2) =

g+1∏
i=1

WC(Xi).

(2) I
(g+1)
C (variables ← 1 except Xi) = |C|gWC(Xi).

Proof. For (1), we have

I
(g+1)
C (Xk1...kℓ ← 1 for ℓ ≥ 2) =

∑
u1,...,ug+1∈Cg+1

( ∏
1≤i≤g+1

X
wt(ui)
i

){ ∏
2≤ℓ≤g+1

( ∏
1≤k1<···<kℓ≤g+1

1

)}

=
∑

u1,...,ug+1∈Cg+1

( ∏
1≤i≤g+1

X
wt(ui)
i

)

=
∏

1≤i≤g+1

(∑
ui∈C

X
wt(ui)
i

)
=

∏
1≤i≤g+1

WC(Xi).

The assertion (2) follows from (1) by specializing variables. This completes
the proof of Proposition 5.

We would like to provide the relationship between the weight enumerator
and the intersection enumerator. In order to do this, we require the following

Lemma 6 Let u1, . . . , ug be elements of Fn
2 . Then the following hold for

1 ≤ ℓ ≤ g.

(1) wt(ui1 ◦ · · · ◦ uiℓ) =
∑

{i1,...,iℓ}⊂{j1,...,jk}
1≤j1<···<jk≤g

nej1...jk
(u1, . . . , ug).

(2) nei1...iℓ
(u1, . . . , ug) =

∑
{i1,...,iℓ}⊂{j1,...,jk}

1≤j1<···<jk≤g

(−1)k−ℓwt(uj1 ◦ · · · ◦ ujk).

Proof. (1) The right-hand side counts the coordinate positions m such
that

ui1,m = ui2,m = · · · = uiℓ,m = 1.

This is wt(ui1 ◦ · · · ◦ uiℓ).
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(2) The right-hand side is equal to

∑
{i1,...,iℓ}⊂{j1,...,jk}

1≤j1<···<jk≤g

(−1)k−ℓ


∑

{j1,...,jk}⊂{m1,...,ms}
1≤m1<···<ms≤g

nem1...ms
(u1, . . . , ug)

 .

We examine each term in this sum. It is easy to see that nei1...iℓ
(u1, . . . , ug)

appears only once. We calculate the coefficient of nem1...ms
(u1, . . . , ug) where

{i1, . . . , iℓ} ⫋ {m1, . . . ,ms}. The coefficient is

s∑
k=ℓ

|{{j1, . . . , jk} : {i1, . . . , iℓ} ⊂ {j1, . . . , jk} ⊂ {m1, . . . ,ms}}|

and this is

s∑
k=ℓ

(−1)k−ℓ

(
s

k − ℓ

)
=

s−ℓ∑
t=0

(−1)t
(
s− ℓ

t

)
= (1 + (−1))s−ℓ

= 0.

Thus, the sum under discussion turns out to consist of essentially only one
term, that is, nei1...iℓ

(u1, . . . , ug). This completes the proof of Lemma 6.

Now, we discuss the relations between the weight enumerator and the
intersection enumerator.

Theorem 7 Let C be a code of length n. Then the following hold.

(1)

W
(g)
C

xe0 ← 1, xej1...jk
←

∏
{i1,...,iℓ}⊂{j1,...,jk}

1≤j1<···<jk≤g

Xi1...iℓ for 1 ≤ k ≤ g


= I

(g)
C ({Xi1i2...iℓ}1≤ℓ≤g

1≤i1<i2<···<iℓ≤g
).
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(2) xn
e0
I
(g)
C

Xj1...jk ← x(−1)k

e0

∏
{i1,...,iℓ}⊂{j1,...,jk}

1≤i1<···<iℓ≤g

x(−1)k−ℓ

ei1 ...eiℓ
for 1 ≤ k ≤ g

 = W
(g)
C ({xa}a∈Fg

2
).

Proof. (1) We have that

W
(g)
C

xe0 ← 1, xej1...jk
←

∏
{i1,...,iℓ}⊂{j1,...,jk}

1≤i1<···<iℓ≤g

Xi1...iℓ



=
∑

u1,...,ug∈C

∏
1≤j1<···<jk≤g

 ∏
{i1,...,iℓ}⊂{j1,...,jk}

1≤i1<···<iℓ≤g

Xi1...iℓ


ej1...jk (u1,...,ug)

=
∑

u1,...,ug∈C

∏
1≤j1<···<jk≤g

X

∑
{i1,...,iℓ}⊂{j1,...,jk}

1≤i1<···<iℓ≤g

nej1...jk

i1...iℓ

=
∑

u1,...,ug∈C

∏
1≤j1<···<jk≤g

X
wt(ui1

◦···◦uiℓ
)

i1...iℓ

= I
(g)
C .

(2) We first observe a trivial relation

ne0(u1, . . . , ug) = n−
∑

1≤i1<···<iℓ≤g

nei1...iℓ
(u1, . . . , ug).
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Then we have that

W
(g)
C =

∑
u1,...,ug∈C

x
ne0 (u1,...,ug)
e0

∏
1≤i1<···<iℓ≤g

x
ne1...eℓ

(u1,...,ug)
ei1...iℓ

=
∑

u1,...,ug∈C

x
n−

∑
1≤i1<···<iℓ≤g nei1...iℓ

(u1,...,ug)

e0

∏
1≤i1<···<iℓ≤g

x
ne1...eℓ

(u1,...,ug)
ei1...iℓ

= xn
e0

∑
u1,...,ug∈C

∏
1≤i1<···<iℓ≤g

(
xei1...iℓ

xe0

)nei1...iℓ
(u1,...,ug)

= xn
e0

∑
u1,...,ug∈C

∏
1≤i1<···<iℓ≤g

(
xei1...iℓ

xe0

)∑
{i1,...,iℓ}⊂{j1,...,jk}

1≤j1<···<jk≤g

(−1)k−ℓwt(uj1
◦···◦ujk

)

= xn
e0

∑
u1,...,ug∈C

∏
1≤j1<···<jk≤g


∏

{i1,...,iℓ}⊂{j1,...,jk}
1≤i1<···<iℓ≤g

(
xei1...iℓ

xe0

)(−1)k−ℓ


wt(uj1

◦···◦ujk
)

.

Making use of

∏
{i1,...,iℓ}⊂{j1,...,jk}

1≤i1<···<iℓ≤g

(
1

xe0

)(−1)k−ℓ

=

(
1

xe0

)(−1)k−1(k1)+(−1)k−2(k2)+···+(−1)k−k(kk)

=

(
1

xe0

)−(−1)k

= x(−1)k

e0
,

we continue

xn
e0

∑
u1,...,ug∈C

∏
1≤j1<···<jk≤g

x(−1)k

e0

∏
{i1,...,iℓ}⊂{j1,...,jk}

1≤i1<···<iℓ≤g

x(−1)k−ℓ

ei1...iℓ


wt(uj1

◦···◦ujk
)

= xn
e0
I
(g)
C

Xj1...jk ← x(−1)k

e0

∏
{i1,...,iℓ}⊂{j1,...,jk}

1≤i1<···<iℓ≤g

x(−1)k−ℓ

ei1 ...eiℓ
for 1 ≤ k ≤ g

 .
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This completes the proof of Theorem 7.

We give some examples.

W
(2)
C (xe0 ← 1, xe2 ← X2, xe1 ← X1, xe12 ← X1X2X12) = I

(2)
C (X1, X2, X12).

W
(3)
C (xe0 ← 1, xe1 ← X1, xe2 ← X2, xe3 ← X3,

xe12 ← X1X2X12, xe13 ← X1X3X13, xe23 ← X2X3X23, xe123 ← X1X2X3X12X13X23X123)

= I
(3)
C (X1, X2, X3, X12, X13, X23, X123).

xn
e0
I
(2)
C (X1 ←

xe1

xe0

, X2 ←
xe2

xe0

, X12 ←
xe0xe12

xe1xe2

) = W
(2)
C (xe0 , xe1 , xe2 , xe12).

xn
e0
I
(3)
C (X1 ←

xe1

xe0

, X2 ←
xe2

xe0

, X3 ←
xe3

xe0

, X12 ←
xe0xe12

xe1xe2

, X13 ←
xe0xe13

xe1xe3

, X23 ←
xe0xe23

xe2xe3

,

X123 ←
xe1xe2xe3xe123

xe0xe12xe13xe23

)

= W
(3)
C (xe0 , xe1 , xe2 , xe12 , xe3 , xe13 , xe23 , xe123).

It is known that the Jacobi forms appear in the Fourier-Jacobi expansion
of Siegel modular forms (cf. [5, 17, 18]). This is one of the motivations
for Ozeki for conducting studies on Jacobi polynomials. To get similar re-
sults for the g-th Jacobi polynomial, we consider the (g + 1)-th intersection
enumerator. For a code of length n, it holds

I
(g+1)
C =

∑
u1,...,ug+1∈C

X
wt(u1)
1 . . . Xwt(ug)

g X
wt(ug+1)
g+1

∏
2≤ℓ≤g+1

( ∏
1≤k1<···<kℓ≤g+1

X
wt(uk1

◦···◦ukℓ
)

k1...kℓ

)

=
∑

ug+1∈C

 ∑
u1,...,ug∈C

∏
2≤ℓ≤g+1

( ∏
1≤k1<···<kℓ≤g+1

X
wt(uk1

◦···◦ukℓ
)

k1...kℓ

)Xwt(ug+1)

=
∑

ug+1∈C

Jac(g)(C, ug+1)X
wt(ug+1)
g+1

=
n∑

r=0

 ∑
v∈C

wt(v)=r

Jac(g)(C, v)

Xr
g+1.
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We have thus obtained the following

Theorem 8 Let C be a code of length n. Assuming that Xg+1 = Y , we have

I
(g+1)
C =

n∑
r=0

 ∑
v∈C

wt(v)=r

Jac(g)(C, v)

Y r.

In this theorem, the g-th Jacobi polynomial is obtained from the (g+1)-th
weight enumerator. If we ask any relation between those of the same genus,
we get the following

Proposition 9 The g-th Jacobi polynomial of a code C with the zero refer-
ence vector is the g-th intersection enumerator, that is,

Jac(g)(C, 0) = I
(g)
C .

Proof. Since we have wt(uk1 ◦ · · · ◦ ukℓ) = 0 for kℓ = g + 1 from our
assumption, it follows that

∏
2≤ℓ≤g+1

 ∏
1≤k1<···<kℓ≤g+1

ug+1=v

X
wt(uk1

◦···◦ukℓ
)

k1...kℓ

 =
∏

2≤ℓ≤g

( ∏
1≤k1<···<kℓ≤g

X
wt(uk1

◦···◦ukℓ
)

k1...kℓ

)
.

Therefore we have

Jac(g)(C, 0) =
∑

u1,...,ug∈C

( ∏
1≤i≤g

X
wt(ui)
i

)
∏

2≤ℓ≤g+1

 ∏
1≤k1<···<kℓ≤g+1

ug+1=v

X
wt(uk1

◦···◦ukℓ
)

k1...kℓ




=
∑

u1,...,ug∈C

( ∏
1≤i≤g

X
wt(ui)
i

){ ∏
2≤ℓ≤g

( ∏
1≤k1<···<kℓ≤g

X
wt(uk1

◦···◦ukℓ
)

k1...kℓ

)}
= I

(g)
C .

This completes the proof of Proposition 9.

Proposition 10 For i = 1, 2, let Ci be a code of length ni and vi an element
of Fni

2 . Then, we have

Jac(g)(C1, v1)Jac
(g)(C2, v2) = Jac(g)(C1 ⊕ C2, v1 ⊕ v2).
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Proof. The proof is straightforward.

We conclude this section with some explicit calculations. Let H be a code
of length 8 defined by the generator matrix

1 1 1 1 0 0 0 0
0 0 1 1 1 1 0 0
0 0 0 0 1 1 1 1
1 0 1 0 1 0 1 0

 .

This is self-dual and doubly even. For simplicity, we set

a = X1, b = X2, c = X12, d = X13, e = X23, f = X123.

We take the following vectors as the reference vectors:

v1 = (0, 0, 0, 0, 0, 0, 0, 0), v2 = (1, 1, 1, 1, 0, 0, 0, 0), v3 = (1, 0, 0, 0, 0, 0, 0, 0).

The terms are grouped following the calculation made after Proposition 4.

Jac(2)(H, v1) = I
(2)
H =

(a8b8c8+a8+b8+1)+14(a8b4c4+b4)+14(a4b8c4+a4)+14(a4b4c4+a4b4)+168a4b4c2.

Jac(2)(H, v2) = (a8b8c8d4e4f 4+b8e4+a8d4+1)+(a8b4c4d4e4f 4+b4e4+a8b4c4d4+b4)

+ 12(a8b4c4d4e2f 2 + b4e2) + (a4b8c4d4e4f 4 + a4b8c4e4 + a4d4 + a4)

+ 12(a4b8c4d2e4f 2 + a4d2) + (a4b4c4d4e4f 4 + a4b4e4 + a4b4d4 + a4b4c4)

+ 12(a4b4c4d2e2f 2 + a4b4d2e2) + 12(a4b4c2d4e2f 2 + a4b4c2e2)

+12(a4b4c2d2e4f 2+a4b4c2d2)+12(a4b4c2d2e2f 2+a4b4c2d2e2)+96a4b4c2d2e2f.

Jac(2)(H, v3) = (a8b8c8def+b8e+a8d+1)+7(a8b4c4def+b4e+a8b4c4d+b4)

+ 7(a4b8c4def + a4b8c4e+ a4d+ a4) + 7(a4b4c4def + a4b4e+ a4b4d+ a4b4c4)

+ 42(a4b4c2def + a4b4c2e+ a4b4c2d+ a4b4c2).

4 MacWilliams Idenity for Inhomogeneous Ja-

cobi Polynomial

In this section, we give the MacWilliams identity for the inhomogeneous
Jacobi polynomial of a code.

12



Theorem 11 For a code C of length n, we have that

Jac(g)(C⊥, v| {Xi}1≤i≤g, {Xk1...kℓ}2≤ℓ≤g+1
1≤k1<···<kℓ≤g+1

)

=
1

|C|g
Zn

0

(
Zg+1

Z0

)wt(v)

Jac(g)(C, v|
{
Zi

Z0

}
1≤i≤g

, {Zk1...kℓ}2≤ℓ≤g+1
1≤k1<···<kℓ≤g+1

)

where

Z0 =
∑

b1,...,bg∈F2

bg+1=0

Xb1
1 . . . Xbg

g

∏
2≤t≤g+1

1≤m1<···<mt≤g+1

X
bm1 ...bmt
m1...mt

 ,

Zi =
∑

b1,...,bg∈F2

bg+1=0

(−1)biXb1
1 . . . Xbg

g

∏
2≤t≤g+1

1≤m1<···<mt≤g+1

X
bm1 ...bmt
m1...mt

 (1 ≤ i ≤ g),

Zg+1 =
∑

b1,...,bg∈F2

bg+1=1

Xb1
1 . . . Xbg

g

∏
2≤t≤g+1

1≤m1<···<mt≤g+1

X
bm1 ...bmt
m1...mt


and for ℓ ≥ 2

Zk1...kℓ

=
∏

0≤j≤ℓ
1≤i1<···<ij≤ℓ

{ki1 ,...,kij }⊂{k1,...,kℓ}

 ∑
b1,...,bg∈F2

bg+1=δkij ,g+1

(−1)bki1+···+bkij−1
+(1−bg+1)bkij

·Xb1
1 . . . Xbg

g

∏
2≤t≤g+1

1≤m1<···<mt≤g+1

X
bm1 ...bmt
m1...mt


(−1)ℓ−j

.

Before proceeding to the proof, we give a remark concerning to the defi-
nition of Zk1...kℓ . If j = 0 which corresponds to ∅ ⊂ {k1, . . . , kℓ}, the product
factor is understood as Z0. The integer bg+1 = δkij ,g+1 is a constant and we

13



need to distinguish the cases kij = g + 1 and kij < g + 1. We note

(bg+1 − 1)kij =

{
kij (kij < g + 1),

0 (kij = g + 1).

Proof of Theorem 11. We follow the usual method of proving the MacWilliams
identity with the function

δC⊥(w) =

{
1 w ∈ C⊥

0 w ̸∈ C⊥

=
1

|C|
∑
u∈C

(−1)u·w

for w ∈ Fn
2 . We have that

Jac(g)(C⊥, v) =
∑

v1,...,vg∈C

(∏
X

wt(vi)
i

)(∏
X

wt(vk1◦···◦vkℓ )
k1...kℓ

)
=

∑
w1,...,wg∈Fn

2

(∏
δC⊥(wi)X

wt(wi)
i

)(∏
X

wt(wk1
◦···◦wkℓ

)

k1...kℓ

)

=
∑

w1,...,wg∈Fn
2

(∏ 1

|C|
∑
ui∈C

(−1)ui·wiX
wt(wi)
i

)(∏
X

wt(wk1
◦···◦wkℓ

)

k1...kℓ

)
=

1

|C|g
∑

u1,...,ug∈C
w1,...,wg∈Fn

2
wg+1=v

(−1)(u11w11+···+u1nw1n)+···+(ug1wg1+···+ugnwgn)

·Xw11
1 . . . Xw1n

1 . . . Xwg1
g . . . Xwgn

g

·Xw11w21
12 . . . Xw1nw2n

12 . . .

·Xwk11
...wkℓ1

k1...kℓ
. . . X

wk1n
...wkℓn

k1...kℓ

·Xw11w21...wg1wg+1,1

12...g,g+1 . . . X
w1nw2n...wgnwg+1,n

12...g,g+1

14



=
1

|C|g
∑

u1,...,ug∈C

∏
1≤i≤g


∑

w1i,...,wgi∈F2

(−1)u1iw1i+···+ugiwgi

Xw1i
1 . . . Xwgi

g

∏
2≤ℓ≤g+1

1≤k1<···<kℓ≤g+1

X
wk1i

...wkℓi

k1...kℓ




=
1

|C|g
∑

u1,...,ug∈C

∏
a∈Fg+1

2


∑

b1,...,bg∈F2

bg+1=ag+1

(−1)a1b1+···+agbg

Xb1
1 . . . Xbg

g

∏
2≤ℓ≤g+1

1≤k1<···<kℓ≤g+1

X
bk1 ...bkℓ
k1...kℓ




na(u1,...,ug ,v)

=
1

|C|g
∑

u1,...,ug∈C

∏
a∈Fg+1

2

xna(u1,...,ug ,v)
a

where

xa =
∑

b1,...,bg∈F2

bg+1=ag+1

(−1)a1b1+···+agbgXb1
1 . . . Xbg

g

∏
2≤ℓ≤g+1

1≤k1<···<kℓ≤g+1

X
bk1 ...bkℓ
k1...kℓ

.

We observe the identity

∏
a∈Fg+1

2

xna(u1,...,ug ,v)
a = xn

0

∏
1≤ℓ≤g+1

1≤k1<···<kℓ≤g+1


∏

0≤j≤ℓ
1≤i1<···<ij≤ℓ

{ki1 ,...,kij }⊂{k1,...,kℓ}

x
(−1)ℓ−j

ki1 ...kij



wt(uk1
◦···◦ukℓ

)
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by Lemma 6 (2). Therefore we have

Jac(C⊥, v) =
1

|C|g
∑

u1,...,ug∈C

∏
a∈Fg+1

2

xna(u1,...,ug ,v)
a

=
1

|C|g
∑

u1,...,ug∈C

xn
0

∏
1≤ℓ≤g+1

1≤k1<···<kℓ≤g+1


∏

0≤j≤ℓ
1≤i1<···<ij≤ℓ

{ki1 ,...,kij }⊂{k1,...,kℓ}

x
(−1)ℓ−j

ki1 ...kij



wt(uk1
◦···◦ukℓ

)

=
1

|C|g
xn
0

(
xg+1

x0

)wt(v)

·
∑

u1,...,ug∈C

∏
1≤i≤g

(
xi

x0

)wt(ui) ∏
2≤ℓ≤g+1

1≤k1<···<kℓ≤g+1


∏

0≤j≤ℓ
1≤i1<···<ij≤ℓ

{ki1 ,...,kij }⊂{k1,...,kℓ}

x
(−1)ℓ−j

ki1 ...kij



wt(uk1
◦···◦ukℓ

)

.

This is the expected formula stated in Theorem 11 if we put

Zi = xi (0 ≤ i ≤ g + 1),

and for ℓ ≥ 2

Zk1...kℓ =
∏

2≤ℓ≤g+1
1≤k1<···<kℓ≤g+1


∏

0≤j≤ℓ
1≤i1<···<ij≤ℓ

{ki1 ,...,kij }⊂{k1,...,kℓ}

x
(−1)ℓ−j

ki1 ...kij


.

This completes the proof of Theorem 11.

We give the explicit forms for small genera.
For g = 1, we have that

x0 = 1 +X1,

x1 = 1−X1,

x2 = 1 +X1X12,

x12 = 1−X1X12
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and
Zi = xi, Z12 =

x0x12

x1x2

.

For g = 2, we have that

x0 = 1 +X1 +X2 +X1X2X12,

x1 = 1−X1 +X2 −X1X2X12,

x2 = 1 +X1 −X2 −X1X2X12,

x3 = 1 +X1X13 +X2X23 +X1X2X12X13X23X123,

x12 = 1−X1 −X2 +X1X2X12,

x13 = 1−X1X13 +X2X23 −X1X2X12X13X23X123,

x23 = 1 +X1X13 −X2X23 −X1X2X12X13X23X123,

x123 = 1−X1X13 −X2X23 +X1X2X12X13X23X123

and

Zi = xi, Z12 =
x0x12

x1x2

, Z13 =
x0x13

x1x3

, Z23 =
x0x23

x2x3

, Z123 =
x1x2x3x123

x0x12x13x23

.

5 MacWilliams Idenity for Homogeneous Ja-

cobi Polynomial

In this section, we give the MacWilliams identity for the homogeneous Jacobi
polynomial of a code.

In order to homogenize the Jacobi polynomial, we introduce the new
variables

Xk1...kℓ =
∏

0≤j≤ℓ
1≤i1<···<ij≤ℓ

{ki1 ,...,kij }⊂{k1,...,kℓ}

y
(−1)ℓ−j

ki1 ...kij
.

Then the homogeneous Jacobi polynomial Jac(C, v; {ya}a∈Fg+1
2

) is defined as
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follows.

Jac(g)(C, v; {ya}a∈Fg+1
2

)

= yn0

(
yg+1

y0

)wt(v)

Jac(g)(C, v;

{
yi
y0

}
1≤i≤g

,


∏

0≤j≤ℓ
1≤i1<···<ij≤ℓ

{ki1 ,...,kij }⊂{k1,...,kℓ}

y
(−1)ℓ−j

ki1 ...kij


2≤ℓ≤g+1
1≤k1<···<kℓ≤g+1

)

=
∑

u1,...,ug∈C

yn0
∏

1≤ℓ≤g+1
1≤k1<···<kℓ≤g+1


∏

0≤j≤ℓ
1≤i1<···<ij≤ℓ

{ki1 ,...,kij }⊂{k1,...,kℓ}

y
(−1)ℓ−j

ki1 ...kij


wt(uk1

◦···◦ukℓ
)

=
∑

u1,...,ug∈C

∏
a∈Fg+1

2

yna(u1 ... ug v)
a

This is a homogeneous polynomial of total degree n. Next we give the
MacWilliams identiy for Jac(C, v; {ya}).

Theorem 12 For a code C of length n, we have

Jac(C⊥, v, g : {ya}a∈Fg+1
2

) =
1

|C|g
Jac(C, v; {

∑
b1,...,bg∈F2

bg+1=ag+1

(−1)a1b1+···+agbgy(b1 ... bg bg+1)}a∈Fg+1
2

).
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Proof. We have

Jac(C⊥, v; {ya}) =
∑

u1,...,ug∈C⊥

∏
a∈Fg+1

2

yna(u1,...,ug ,v)
a

=
∑

w1,...,wg∈Fn
2

δC⊥(w1) . . . δC⊥(wg)
∏
a

yna(w1,...,wg ,v)
a

=
1

|C|g
∑

u1,...,ug∈C
w1,...,wg∈Fn

2

(−1)u1·w1+···+ug ·wg
∏
a

yna(w1,...,wg ,v)
a

=
1

|C|g
∑

u1,...,ug∈C
w1,...,wg∈Fn

2

(−1)(u11w11+···+u1nw1n)+···+(ug1wg1+···+ugnwgn)

× y(w11 ... wg1 v1) . . . y(w1n ... wgn vn)

=
1

|C|g
∑

u1,...,ug∈C

∏
1≤i≤n

 ∑
w1i,...,wgi∈F2

(−1)u1iw1i+···+ugiwgiy(w1i ... wgi vi)


=

1

|C|g
∑

u1,...,ug∈C

∏
a∈Fg+1

2


∑

b1,...,bg∈F2

bg+1=ag+1

(−1)a1b1+···+agbgy(b1 ... bg bg+1)


na(u1,...,ug ,v)

=
1

|C|g
Jac(C, v; {

∑
b1,...,bg∈F2

bg+1=ag+1

(−1)a1b1+···+agbgy(b1 ... bg bg+1)}a∈Fg+1
2

).

This completes the proof of the MacWilliams identity for the homogeneous
Jacobi polynomial.

We will discuss the applications of the MacWilliams identity in the sub-
sequent papers.
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(1972), 157-181.

[4] Duke, W., On codes and Siegel modular forms, Internat. Math. Res.
Notices 1993, no. 5, 125-136.

[5] Eichler, M., Zagier, D., The theory of Jacobi forms, Progress in Mathe-
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