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Abstract

The Terwilliger algebra plays an important role in the theory of

association schemes. The present paper gives the explicit structures of

the Terwilliger algebras of the group association schemes of the �nite

groups PSL(2, 7), A6, and S6.

1 Introduction

Association schemes enable us to study combinatorial problems in a uni�ed
way. We refer to [2, 4] for the foundations of association schemes. In a series
of papers [7], Terwilliger introduced a new method, the so-called Terwilliger
algebra, to investigate the commutative association schemes. Since then
there have been many investigations on Terwilliger algebras (cf. [6, 5]). It is
very important to know the explicit structure of the Terwilliger algebra. The
cases of the group association schemes of S5 and A5 were studied in [1] along
the line of the work [3]. In the present paper we determine the structures of
the Terwilliger algebras of the group association schemes of the �nite groups
PSL(2, 7), A6, and S6.

2 Preliminaries

We begin with the de�nition of a group association scheme.

De�nition 2.1. Let G be a �nite group and C0 = {e}, C1, . . . , Cd the
conjugacy classes of G where e is the identity of G. De�ne the relations
Ri(i = 0, 1, . . . , d) on G by

(x, y) ∈ Ri ⇐⇒ yx−1 ∈ Ci.

1



Then X(G) = (G, {Ri}0≤i≤d) forms a commutative association scheme of
class d called the group association scheme of G.

We associate the matrix Ai of the relation Ri as

(Ai)x,y =

{
1 if (x, y) ∈ Ri,

0 otherwise.

Then we have

AiAj =

d∑
k=0

pkijAk

and A0, . . . , Ad generate the so-called Bose-Mesner algebra A. The
intersection numbers pkij of the group association scheme X(G) are given
by

|{(x, y) ∈ Ci × Cj |xy = z, z ∈ Ck}|.

The algebra A has a second basis E0, . . . , Ed of primitive idempotents, and

Ei ◦ Ej =
1

|G|
qkijEk,

where ◦ denotes Hadamard (entry-wise) multiplication. For each i =
0, . . . , d, let E∗

i and A∗
i be the diagonal matrices of size |G| × |G| which

are de�ned as follows.

(E∗
i )x,x =

{
1, if x ∈ Ci

0, if x /∈ Ci

(x ∈ G) ,

(A∗
i )x,x = |G|(Ei)e,x (x ∈ G).

Then E∗
0 , . . . , E

∗
d form a basis for the dual Bose-Mesner algebra A∗.

The intersection numbers provide information about the structure of the
Terwilliger algebra. We refer the following relations [7].

E∗
i AjE

∗
k = 0 ⇔ pkij = 0 (0 ≤ i, j, k ≤ d),

EiA
∗
jEk = 0 ⇔ qkij = 0 (0 ≤ i, j, k ≤ d).

We need to �x the ordering of the conjugacy classes. The following table
gives the representatives and the orders of conjugacy classes.

1. PSL(2, 7)
C0 C1 C2 C3 C4 C5

rep. (1) (357)(468) (2354786) (2465837) (12)(34)(58)(67) (1235)(4876)
|Ci| : 1 56 24 24 21 42

2. A6

C0 C1 C2 C3 C4 C5 C6

rep. (1) (12)(34) (123) (123)(456) (1234)(56) (12345) (12346)
|Ci| 1 45 40 40 90 72 72

2



3. S6

C0 C1 C2 C3 C4 C5

rep. (1) (12) (12)(34) (12)(34)(56) (123) (123)(45)
|Ci| 1 15 45 15 40 120

C6 C7 C8 C9 C10
(123)(456) (1234) (1234)(56) (12345) (123456)

40 90 90 144 120

Finally we give the de�nition of the Terwilliger algebra of the group
association scheme. We shall denote by Mk the ring of k × k matrices over
the complex number C.

De�nition 2.2. Let G be a �nite group. The Terwilliger algebra T (G) of
the group association scheme X(G) is a sub-algebra of M|G| generated by A
and A∗.

Since T (G) is closed under the conjugate-transpose, T (G) is semi-simple.
In the next section, we investigate the Terwilliger algebras of the groups
association schemes of PSL(2, 7), A6 and S6.

3 Results

In [1], Balmaceda and Oura gave the structures of theTerwilliger algebra of
the group association schemes of S5 and A5. Following their method, we
determine the Terwilliger algebras for the cases PSL(2, 7), A6, and S6.

Theorem 3.1. The dimensions of T (PSL(2, 7)), T (A6), and T (S6) are

given as follows.

dimT (PSL(2, 7)) = 165,

dimT (A6) = 336,

dimT (S5) = 758.

Proof. We compute a set of linearly independent elements among E∗
i AjEk

and E∗
i AjEk · E∗

kAlE
∗
m = E∗

i AjE
∗
kAlE

∗
m.

We provide matrices below to show how many elements of a basis occur. As
these matrices are symmetric, we omit the entries below diagonal.

PSL(2, 7) :



1 1 1 1 1 1
13 7 7 5 10

6 6 3 6
6 3 6

4 5
9
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A6 :



1 1 1 1 1 1 1
9 5 5 9 7 7

8 8 9 8 8
8 9 8 8

16 13 13
12 12
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S6 :



1 1 1 1 1 1 1 1 1 1 1
3 3 4 4 5 3 2 4 2 3

6 4 6 9 8 2 6 4 6
8 8 8 7 4 8 4 8

12 13 13 4 12 6 13
19 16 3 13 6 12

23 3 13 8 16
3 4 3 5

12 6 13
6 9

19


We denote by Z(T (G)) the center of the Terwilliger algebra T (G) of a

�nite group G.

Lemma 3.1. The dimensions of Z(T (G)) for G = PSL(2, 7), A6, S6 are

given as follows.

dimZ(T (PSL(2, 7))) = 7,

dimZ(T (A6)) = 10,

dimZ(T (S6)) = 14.

Proof. The result is obtained by determining a basis for center. We solve a
linear equation system {xiy = yxi} ranging over all elements xi in the basis
of T (G) and y =

∑
cjbj where bj are the basis elements of T (G) and cj is

any scalar.

Let {ei : 1 ≤ i ≤ s} be a basis of Z(T (G)). Then we have eiej =
∑

tkijek
and put Bi = (tkij) for i = 1, 2, . . . , s. Since these matrices mutually
commute, they are simultaneously diagonalizable. We shall denote by
v1(i), . . . , vs(i) the diagonal entries of the diagonalized matrix of Bi and
de�ne the matrix M by Mij = vi(j). Then we get the primitive central
idempotents ε1, . . . , εs by

(ε1, . . . , εs) = (e1, . . . , es)M
−1.
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Theorem 3.2. The degrees of the irreducible complex representations af-

forded by every idempotent are given below.

T (PSL(2, 7)) εi ε1 ε2 ε3 ε4 ε5 ε6 ε7
deg εi 1 2 3 3 5 6 9

T (A6) εi ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10
deg εi 1 3 3 4 4 6 6 7 8 10

T (S6) εi ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10
deg εi 1 1 1 3 3 4 6 7 8 8

ε11 ε12 ε13 ε14
9 9 11 15

Proof. This is because that T (G)εi ∼= Mdi and that d2i = dimT (G)εi equals
the number of linearly independent elements in the set {xjεi} where xj are
the basis elements of T .

Theorems 3.1 and 3.2 are combined as

165 = 12 + 22 + 32 + 32 + 52 + 62 + 92,

336 = 12 + 32 + 32 + 42 + 42 + 62 + 62 + 72 + 82 + 102,

758 = 12 + 12 + 12 + 32 + 32 + 42 + 62 + 72 + 82 + 82 + 92 + 92 + 112 + 152.

The degrees of irreducible complex representations a�orded by every
primitive central idempotents enable us to get the following structure
theorem.

Corollary 3.1. We have that

T (PSL(2, 7)) ∼= M1 ⊕M2 ⊕M3 ⊕M3 ⊕M5 ⊕M6 ⊕M9,

T (A6) ∼= M1 ⊕M3 ⊕M3 ⊕M4 ⊕M4 ⊕M6 ⊕M6 ⊕M7 ⊕M8 ⊕M10,

T (S6) ∼= M1 ⊕M1 ⊕M1 ⊕M3 ⊕M3 ⊕M4 ⊕M6 ⊕M7 ⊕M8 ⊕M8

⊕M9 ⊕M9 ⊕M11 ⊕M15.
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