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Abstract

We have studied E-polynomials which are combinatorial analogue
of Eisenstein series. In this paper, we apply this approach to classical
invariant theory. The corresponding subrings to E-polynomials are
investigated.
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1 Introduction

Eisenstein series are important in number theory. Under the correspondence
between combinatorics and modular forms, we have introduced the notion
of E-polynomials.

On the other hand, classical invariant theory plays important roles in
many branches of mathematics. Igusa [2] discussed invariant theory of bi-
nary forms and arithmetic invariants. The connection between the modular
forms and projective invariants then was given in [3]. The structure of the
graded ring of invariants of binary octavics then was given by Shioda in [8].
In this paper, we construct the analogue theory of Eisenstein series. We
apply the notion to classical invariant theory. The computations are done
by [1] and [6].

Let m be a positive integer. We take a ground form of degree m

f =
m∑
i=0

ui

(
m

i

)
ξm−i1 ξi2.

While ξ1, ξ2 are transformed according to

(ξ1 ξ2) = (ξ′1 ξ
′
2)A (”contragrediently”),
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f changes into a form of the new variables ξ′1, ξ
′
2 with the coefficients u′0,

u′1, . . . , u
′
m where 

u′0
u′1
...
u′m

 =
(
A
)
m


u0
u1
...
um

 .

We write this correspondence u′ =
(
A
)
m
u for short. This gives an irre-

ducible representation (A 7→
(
A
)
m

) of SL(2,C) of degree m+ 1.
We let SL(2,C) operate on C[u] = C[u0, u1, . . . , um] by the above rep-

resentation and consider the invariant subring, say S(2,m):

S(2,m) := {J ∈ C[u] : J(u′) = J(u), ∀A ∈ SL(2,C)}.

It is known that S(2,m) is of finite type over C. For example, we have

S(2, 2) = C[u0u2 − u21].

Let M be a graded ring such that each homogeneous part Md of degree
d is a finite dimensional vector space over M0 = C. We can write M as

M =

∞⊕
d=0

Md.

The dimension formula of M is defined by the formal series

∞∑
d=0

(dimMd)t
d.

The following formulas are the dimension formulas of S(2,m) for m =
2, 4, 6, 8.

S(2, 2) :
∞∑
d=0

(dimSd(2, 2))td =
1

1− t2
,

S(2, 4) :
∞∑
d=0

(dimSd(2, 4))td =
1

(1− t2)(1− t3)
,

S(2, 6) :
∞∑
d=0

(dimSd(2, 6))td =
1 + t15

(1− t2)(1− t4)(1− t6)(1− t10)
,

S(2, 8) :

∞∑
d=0

(dimSd(2, 8))td =
1 + t8 + t9 + t10 + t18∏7

i=2(1− ti)
.
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The generators of the rings mentioned are known. For example, S(2, 4)
is generated by P and Q whose explicit forms are

P = u0u4 − 4u1u3 + 3u22,

Q = det

u0 u1 u2
u1 u2 u3
u2 u3 u4

 .

The ring S(2, 6) are generated by 5 elements J2, J4, J6, J10, and J15. We
write the generators of S(2, 6) in Appendix A. In this paper, we deal with
only invariants of even degrees. So we omit J15. We denote by S(2,m)e the
even parts of S(2,m).

In order to obtain the useful construction of invariants, we shall interpret
the ground form as

f = u0

m∏
i=1

(ξ1 − εiξ2) .

As usual, we denote by Sn the symmetric group of degree n. The following
lemma gives a construction of invariants we expected (cf. [2]).

Lemma 1. An expression of the form

ur0
∑

(εi − εj)(εk − εl) . . . ,

in which every εi appears r times in each product and which is symmetric
in ε1, ε2, . . . , εm can be considered as an invariant of degree r.

2 Results

Let g be a positive integer. We start with a ground form of degree 2g + 2

f =

2g+2∑
i=0

ui

(
2g + 2

i

)
ξ
(2g+2)−i
1 ξi2

= u0

2g+2∏
i=1

(ξ1 − εiξ2) .

We would like to concentrate on one type of invariants we shall define now.
We fix the following polynomial

ϕ2n = u2n0 (ε1 − ε2)2n(ε3 − ε4)2n . . . (ε2g+1 − ε2g+2)
2n.
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We denote by G the symmetric group of degree 2g + 2. The group G acts
on the polynomial ring C[ε1, . . . , ε2g+2] as F (. . . , εi, . . . )

σ = F (. . . , εiσ , . . . ).
Let Gϕ2n be the stabilizer of ϕ2n, that is, elements of G which preserve ϕ2n.

Proposition 2. The group Gϕ2n can be generated by the (g+1)+2 elements

(1 2), (3 4), . . . , (2g + 1 2g + 2),

(1 3)(2 4), (1 3 5 . . . 2g + 1)(2 4 . . . 2g + 2)

and is isomorphic to Cg+1
2 o Sg+1. In particular, Gϕ2n does not depend on

n.

Proof. The elements given in Proposition 2 are in Gϕ2n . Conversely, since
(εi−εj)2n = (εj−εi)2n, the first g+1 elements can be obtained by interchang-
ing of two indexes in each parenthesis. These interchanging are isomorphic
to Cg+1

2 . Let 1̃, 2̃, . . . , g̃ + 1 represent (1 2), (3 4), . . . , (g + 1 g + 2), respec-
tively. Then, the additional two generators come from the generators of the
set of all permutations of {1̃, 2̃, . . . , g̃ + 1}. This set is isomorphic to Sg+1

and its generators are (1̃ 2̃) and (1̃ ... g̃ + 1) which represent (1 2)(3 4) and
(1 3 . . . 2g + 1)(2 4 . . . 2g + 2), respectively.

For simplicity, we denote by K for Gϕ2n and by κ the cardinality of
K\G. The number κ for g = 1, 2, 3 is 3, 15, 105, respectively.

Set
ψ2n =

∑
K\G3σ

ϕσ2n,

which is actually an element of degree 2n in S(2, 2g + 2) by Lemma 1. We
call the polynomial ψ2n by an E-polynomial. We shall denote by Ag the ring
generated by ψ2n (n = 1, 2, . . . ) over C. The ring Ag is a subring of the
invariant ring S(2, 2g + 2).

Theorem 3. The ring Ag is finitely generated over C. More precisely the
elements ψ2, ψ4, . . . , ψ2κ generate the ring Ag.

Proof. Since the second assertion implies the first, we shall show the second.
Let σ1, σ2, . . . , σκ be a set of representatives of K\G. For each σi, the
polynomial ϕσi2n can be written as

ϕσi2n = B2n
i

where
Bi = (u0 (ε1 − ε2) (ε3 − ε4) . . . (ε2g+1 − ε2g+2))

σi .
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Because of the last statement of Proposition 2, the polynomial ψ2n has the
form

ψ2n = B2n
1 +B2n

2 + · · ·+B2n
κ

for n = 1, 2, . . . . By applying the fundamental theorem of symmetric func-
tions to our situation, we see that Ag is generated by ψ2, ψ4, . . . , ψ2κ.

The natural question arising from Theorem 3 is if we can find the minimal
generators of Ag. On this point, we have the following theorem.

Theorem 4. (1) A1 is generated by ψ2, ψ6 and coincides with S(2, 4)e.
(2) A2 is generated by ψ2, ψ4, ψ6, ψ10 and coincides with S(2, 6)e.
(3) A3 is strictly smaller than S(2, 8)e.

Proof. We prove Theorem 4 by showing the relationship with the known
generators. Starting from g = 1, the polynomials ψ2 and ψ6 can be expressed
in P and Q as

ψ2 = 24 · P,
ψ6 = 27 · 3 · 11 · P 3 − 28 · 34 ·Q2.

Now we continue for g = 2. By J2, J4, J6, and J10, the polynomials ψ2,
ψ4, ψ6, and ψ10 can be expressed as

ψ2 = −24 · 3 · 5 · J2,
ψ4 = 23 · 3 · 5 · 71 · J2

2 + 25 · 33 · 53 · J4,
ψ6 = −25 · 33 · 5 · 72 · J3

2 − 27 · 35 · 53 · 7J2J4 + 23 · 3 · 54 · 13 · J6,
ψ10 = 25 · 33 · 5 · 17 · 15287 · J5

2 − 28 · 35 · 54 · 29 · 199 · J3
2J4

+ 23 · 3 · 55 · 37 · 857J2
2J6 − 29 · 37 · 56 · 229J2J

2
4

+ 25 · 33 · 56 · 2207 · J4J6 − 25 · 36 · 56 · 31 · J10.

For g = 3, the dimension formula of S(2, 8) is

∞∑
d=0

(dimSd(2, 8))td =
1 + t8 + t9 + t10 + t18∏7

i=2(1− ti)

= 1 + t2 + t3 + 2t4 + 2t5 + 4t6 + 4t7 + 7t8 + · · · .

The dimension of S(2, 8) of degree 8 is 7. However, the dimension of A3 of
degree 8 is at most 5.
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For the comparation of the dimension formula, we give an example for
g = 2. The dimension formula of S(2, 6) is

1 + t15

(1− t2)(1− t4)(1− t6)(1− t10)
,

while the dimension formula of A2 is

1

(1− t2)(1− t4)(1− t6)(1− t10)
.

In the paper [5], the relation between the ring S(2, 2g+2) and the weight
enumerators of some codes was discussed. In Appendix B, we give the
relations between the weight enumerators and E-polynomials for g = 1, 2.
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Appendix A Generators of S(2, 6)

These are the generators of S(2, 6) taken from [7].

J2 = u0u6 − 6u1u5 + 15u2u4 − 10u23,

J4 = det


u0 u1 u2 u3
u1 u2 u3 u4
u2 u3 u4 u5
u3 u4 u5 u6

 ,

J6 = det

b0 b1 b2
b1 b2 b3
b2 b3 b4

 ,

J10 = u0 c
3 − 6u1 bc

2 + 3u2(ac+ 4b2)c− 4u3(3abc+ 2b3) + 3u4 a(ac+ 4b2)

− 6u5 a
2b+ u6 a

3,

where

b0 = 6(u0u4 − 4u1u3 + 3u22),

b1 = 3(u0u5 − 3u1u4 + 2u2u3),

b2 = u0u6 − 9u2u4 + 8u23,

b3 = 3(u1u6 − 3u2u5 + 2u3u4),

b4 = 6(u2u6 − 4u3u5 + 3u24),

a = 2(u0u2u6 − 3u0u3u5 + 2u0u
2
4 − u21u6 + 3u1u2u5 − u1u3u4 − 3u22u4 + 2u2u

2
3),

b = u0u3u6 − u0u4u5 − u1u2u6 − 8u1u3u5 + 9u1u
2
4 + 9u22u5 − 17u2u3u4 + 8u33,

c = 2(u0u4u6 − u0u25 − 3u1u3u6 + 3u1u4u5 + 2u22u6 − u2u3u5 − 3u2u
2
4 + 2u23u4).

Appendix B Weight Enumerator

We recall coding theory. A code C of length n means a subspace of Fn2 . The
weight wt(x) of x ∈ Fn2 means the number of nonzero xi. The inner product
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of two elements x, y ∈ Fn2 is defined by

x · y :=
∑

xi yi ∈ F2.

The dual code C⊥ of C is defined by the subspace of Fn2 whose elements are
orthogonal to every element of C. If C = C⊥, then we call C self-dual. The
code C is called doubly even if the weight of any element in C is equivalent
to 0 modulo 4. The weight enumerator of C in genus g is defined by

W
(g)
C := W

(g)
C (xa|a ∈ Fg2) =

∑
c1,...,cg∈C

∏
a∈Fg2

x
na(c1,...,cg)
a

where
na(c1, . . . , cg) = |{i | (c1i, . . . , cgi) = a}|.

Let ρ̃ be the combination of the Broué-Enguehard map Th and Igusa’s
homomorphism ρ. In other word, we can say

ρ̃(W
(g)
C ) = ρ(Th(W

(g)
C ))

for a code C. We omit the detail of ρ̃ and only say that ρ̃ maps the weight
enumerators in genus g to the ring S(2, 2g+2). The reader who is interested
in the detail of ρ̃ can refer to [5]. For every code C used here, the expression

of ρ̃(W
(g)
C ) is taken from [5].

We start with g = 1. The weight enumerators of some codes are related
to E-polynomials by the following relations.

ρ̃(W (1)
e8 ) = 2−1 ψ2,

ρ̃(W (1)
g24 ) = 2−5 · 11 · ψ3

2 − 2−3 · 7ψ6.

For g = 2, the relation between the weight enumerators and E-polynomials
are the following.
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ρ̃(W (2)
e8 ) = 2−4ψ2

2 − 3 · 2−3ψ4

ρ̃(W (2)
g24 ) = 2−15 · 32 · 5−1 · 13−2 · 31−1 · 20129ψ6

2 − 2−14 · 5 · 13−2 · 31−1 · 59651ψ4
2ψ4

+ 2−13 · 7 · 13−2 · 31−1 · 809ψ3
2ψ6 − 2−9 · 3 · 5−1 · 7 · 11 · 31−1ψ2ψ10

+ 2−11 · 3 · 13−2 · 31−1 · 65287ψ2
2ψ

2
4 + 2−12 · 7 · 13−2 · 29 · 31−1 · 149ψ2ψ4ψ6

− 2−10 · 3 · 11ψ3
4 + 2−7 · 32 · 7 · 13−2ψ2

6

ρ̃(W
(2)

d+24
) = 2−10 · 5−1 · 13−2 · 31−1 · 6323ψ6

2 − 2−9 · 13−2 · 31−1 · 12143ψ4
2ψ4

− 2−10 · 3 · 13−2 · 31−1 · 683ψ3
2ψ6 + 2−6 · 3 · 5−1 · 11 · 31−1ψ2ψ10

+ 2−10 · 32 · 13−2 · 31−1 · 47 · 379ψ2
2ψ

2
4 − 2−9 · 13−2 · 31−1 · 2089ψ2ψ4ψ6

− 2−9 · 3 · 11ψ3
4 − 2−5 · 32 · 13−2ψ2

6

ρ̃(W
(2)

d+32
) = 2−16 · 5−1 · 13−2 · 31−1 · 20507ψ8

2 − 2−13 · 3−1 · 7 · 13−2 · 23 · 31−1 · 271ψ6
2ψ4

− 2−11 · 5−1 · 13−2 · 23 · 31−1 · 227ψ5
2ψ6 + 2−13 · 3−1 · 13−2 · 15541ψ4

2ψ
2
4

+ 2−9 · 3−1 · 13−2 · 31−1 · 4679ψ3
2ψ4ψ6 + 2−7 · 5−1 · 13−1 · 31−1 · 173ψ3

2ψ10

− 2−11 · 7 · 13−2 · 31−1 · 27743ψ2
2ψ

3
4 − 2−6 · 13−2 · 31−1 · 139ψ2

2ψ
2
6

+ 2−9 · 3−1 · 13−2 · 31−1 · 2129ψ2ψ
2
4ψ6 − 2−6 · 13−1 · 31−1 · 107ψ2ψ4ψ10

+ 2−12 · 3 · 43ψ4
4 + 2−5 · 13−2 · 31−1 · 281ψ4ψ

2
6 + 2−1 · 3 · 5−1 · 13−1 · 31−1ψ6ψ10

ρ̃(W
(2)

d+40
) = 2−18 · 3−1 · 5−1 · 13−2 · 31−2 · 267941ψ10

2 − 2−16 · 3−1 · 13−2 · 31−2 · 606959ψ8
2ψ4

− 2−18 · 3−1 · 13−2 · 31−2 · 1877033ψ7
2ψ6 + 2−18 · 3−1 · 13−2 · 31−2 · 2812 · 541ψ6

2ψ
2
4

+ 2−14 · 5−1 · 13−1 · 17 · 31−2 · 4871ψ5
2ψ10 + 2−17 · 3−1 · 13−2 · 31−2 · 2207 · 5779ψ5

2ψ4ψ6

− 2−17 · 5 · 13−1 · 31−2 · 903827ψ4
2ψ

3
4 − 2−14 · 3−1 · 5 · 13−2 · 31−2 · 107209ψ4

2ψ
2
6

− 2−16 · 3−1 · 5 · 13−2 · 17 · 31−2 · 59 · 4957ψ3
2ψ

2
4ψ6 − 2−12 · 7 · 13−1 · 31−2 · 7187ψ3

2ψ4ψ10

+ 2−16 · 3 · 5 · 13−2 · 31−2 · 37 · 205187ψ2
2ψ

4
4 + 2−12 · 3−1 · 5 · 13−2 · 31−2 · 271919ψ2

2ψ4ψ
2
6

+ 2−9 · 13−1 · 17 · 31−2 · 43ψ2
2ψ6ψ10 + 2−15 · 5 · 7 · 13−2 · 31−2 · 79319ψ2ψ

3
4ψ6

+ 2−12 · 3 · 13−1 · 31−2 · 181 · 293ψ2ψ
2
4ψ10 − 2−15 · 33 · 19ψ5

4

− 2−12 · 3−1 · 5 · 13−2 · 31−2 · 71 · 6719ψ2
4ψ

2
6 − 2−8 · 13−1 · 17 · 31−2 · 293ψ4ψ6ψ10

+ 2−6 · 3 · 5−1 · 31−2 · 41ψ2
10.
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