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Abstract

We have studied E-polynomials which are combinatorial analogue
of Eisenstein series. In this paper, we apply this approach to classical
invariant theory. The corresponding subrings to E-polynomials are
investigated.
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1 Introduction

Eisenstein series are important in number theory. Under the correspondence
between combinatorics and modular forms, we have introduced the notion
of E-polynomials.

On the other hand, classical invariant theory plays important roles in
many branches of mathematics. Igusa [2] discussed invariant theory of bi-
nary forms and arithmetic invariants. The connection between the modular
forms and projective invariants then was given in [3]. The structure of the
graded ring of invariants of binary octavics then was given by Shioda in [8].
In this paper, we construct the analogue theory of Eisenstein series. We
apply the notion to classical invariant theory. The computations are done
by [1] and [6].

Let m be a positive integer. We take a ground form of degree m
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We write this correspondence v = (A)mu for short. This gives an irre-
ducible representation (A — (A)m) of SL(2,C) of degree m + 1.

We let SL(2,C) operate on Clu| = Clug,u1,...,un] by the above rep-
resentation and consider the invariant subring, say S(2,m):

S(2,m) :={J e Clu]: J')=Ju), "Ae SL(2,C)}.
It is known that S(2,m) is of finite type over C. For example, we have
5(2,2) = Clugug — u3].

Let M be a graded ring such that each homogeneous part My of degree
d is a finite dimensional vector space over My = C. We can write M as

M = é M.
d=0

The dimension formula of M is defined by the formal series

oo

> " (dim My)t?.
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The following formulas are the dimension formulas of S(2,m) for m =
2,4,6,8.
$(2,2) : > (dim S4(2,2))t% =
d=0
S(2,4) : > (dim Sg(2,4))t¢ =
d=0
S(2,6) = > (dim S4(2,6))t? =
d=0
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The generators of the rings mentioned are known. For example, S(2,4)
is generated by P and () whose explicit forms are

P = upuyg — duqus + 3u§,

Up Up U2
Q=det | ur wuo wus
U2 U3 U4q

The ring S(2,6) are generated by 5 elements Jo, Jy, Jg, Ji0, and Ji5. We
write the generators of S(2,6) in Appendix A. In this paper, we deal with
only invariants of even degrees. So we omit J;5. We denote by S(2,m)€ the
even parts of S(2,m).

In order to obtain the useful construction of invariants, we shall interpret
the ground form as

f=uo [ & —eio).
i=1

As usual, we denote by S, the symmetric group of degree n. The following
lemma gives a construction of invariants we expected (cf. [2]).

Lemma 1. An expression of the form

up > (ei—ej)en—e). ..,

in which every e; appears r times in each product and which is symmetric
in €1,€9,...,&m can be considered as an invariant of degree r.

2 Results

Let g be a positive integer. We start with a ground form of degree 2¢g 4 2
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We would like to concentrate on one type of invariants we shall define now.
We fix the following polynomial

Pon = ug"(e1 — €2)*" (3 — €4)™" .. . (E2g41 — E2g42)""



We denote by G the symmetric group of degree 2g + 2. The group G acts
on the polynomial ring Cle, ..., e2942] as F(...,e4,...)7 = F(...,g0,...).
Let G, be the stabilizer of ya,, that is, elements of G which preserve ¢g,,.

Proposition 2. The group G,, can be generated by the (g+1)+2 elements

(12),(34),...,(29+12g9+2),
(13)(24),(135 ... 2g4+1)(24 ... 29+2)

and is isomorphic to C’ngl X Sgy1. In particular, G, does not depend on
n.

Proof. The elements given in Proposition 2 are in G,,. Conversely, since
(ei—€j)*" = (gj—ei)?", the first g+1 elements can be obtained by interchang-
ing of two indexes in each parenthesis. These interchanging are isomorphic
to Cngl. Let 1,2,... ,g/—l\—/l represent (1 2),(34),...,(¢9+1 g+ 2), respec-
tively. Then, the additional two generators come from the generators of the
set of all permutations of {1,2,..., g/J\r/l} This set is isomorphic to Sg41
and its generators are (1 2) and (I ... g+ 1) which represent (1 2)(3 4) and
(13 ...29+1)(24 ... 29+ 2), respectively. O

For simplicity, we denote by K for G, and by s the cardinality of
K\G. The number « for g =1,2,3 is 3, 15, 105, respectively.

Set
Yon = g (Pgnv
K\G>0

which is actually an element of degree 2n in S(2,2g + 2) by Lemma 1. We
call the polynomial 12, by an E-polynomial. We shall denote by A, the ring
generated by 19, (n = 1,2,...) over C. The ring A, is a subring of the
invariant ring S(2,2¢g + 2).

Theorem 3. The ring Ay is finitely generated over C. More precisely the
elements 12,14, ..., 2, generate the ring A,.

Proof. Since the second assertion implies the first, we shall show the second.
Let 01,09,...,0, be a set of representatives of K\G. For each o;, the
polynomial ¢! can be written as

o 2n
©op = Bj

where
B = (ug (e1 —e2) (€3 —€4) - .- (E2g4+1 — €29+42))7" -
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Because of the last statement of Proposition 2, the polynomial 15, has the

form
Vo = B2+ B 4 .- + B
forn =1,2,.... By applying the fundamental theorem of symmetric func-

tions to our situation, we see that A, is generated by 12,14, ..., Pos. ]

The natural question arising from Theorem 3 is if we can find the minimal
generators of A,. On this point, we have the following theorem.

Theorem 4. (1) Ay is generated by 12,1 and coincides with S(2,4)¢.
(2) As is generated by o, 14,106,110 and coincides with S(2,6)°.
(3) As is strictly smaller than S(2,8)¢.

Proof. We prove Theorem 4 by showing the relationship with the known
generators. Starting from g = 1, the polynomials 12 and g can be expressed
in P and @ as

o =24- P,
e =27-3-11-P3—28.3%. Q%

Now we continue for g = 2. By Ja, J4, Jg, and Jyg, the polynomials 1,
Wy, Vg, and P19 can be expressed as

o= —2'-3-5-J,

Y= 2%-3.5-71-J2+2°-3.5%. ]y,

o= —2°-32.5.-72. 3 —27.3° .53 . TJyJy +2° 3.5 13- Jg,

Yro= 2°-3%.5.17-15287-J5 —2%.3%.5%.29.199. J3J,
+23.3.5%.37.857J2J5 — 2° - 37 - 55 . 2297577
+25.33.55.2207 . JyJ5 —2°5-35.55.31 - Jy.

For g = 3, the dimension formula of S(2,8) is

(dim S,(2, 8))#¢ L1517 4410+ #18
al4, = 7 .
0 Hi:2(1 - tz)

=1+ 4+ +2  + 20+ 4+ "+

WE

.
Il

The dimension of S(2,8) of degree 8 is 7. However, the dimension of Az of
degree 8 is at most 5. O



For the comparation of the dimension formula, we give an example for
g = 2. The dimension formula of S(2,6) is

1+t
(1—2)(1 — t4)(1 — t6)(1 — ¢10)”

while the dimension formula of Ay is

1
(1 —2)(1 —t4)(1 —t6)(1 — ¢10)°

In the paper [5], the relation between the ring S(2,2g+2) and the weight
enumerators of some codes was discussed. In Appendix B, we give the
relations between the weight enumerators and E-polynomials for g = 1, 2.
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Appendix A Generators of S(2,6)

These are the generators of S(2,6) taken from [7].

Jo = ugug — 6uius + 15uguyg — 10u§,

Up Uy U2 U3

Jy=det | YT Y2 Uz U4
* up uz U4 us |’
us U4 U5 Ug
bp b1 bo
Jg=det | by by b3 |,
by b3 by
Jio = up ¢ — 6uy bc® + 3ug(ac + 4b2)c — 4uz(3abc + 2b3) + 3uy a(ac + 4b2)

2 3
— 6us a“b+ ug a”,

where

by = 6(ugug — dujusg + 3u%),
b1 = 3(ugus — 3ujug + 2ugus),
by = ugug — Quauy + 8u§,
bs = 3(urug — ugus + 2usuy),
by = 6(ugug — duzus + 3u?),
a = 2(ugugug — Sugusus + 2ugul — usug + 3ugUgls — UTU3UL — SUSUY + 2U2U§),
b = ugusug — upUgUs — UTUUg — SUTUIU5 + 9u1ui + 9u§U5 — 17usuguy + 8u§,

¢ = 2(upugug — uoug — 3uiusug + Juiuqus + 2u§u6 — UgU3gU; — 3uQui + 2u§U4).

Appendix B Weight Enumerator

We recall coding theory. A code C of length n means a subspace of 5. The
weight wt(z) of z € F§ means the number of nonzero z;. The inner product



of two elements z,y € F5 is defined by
Ty = leyl c Fs.

The dual code C+ of C is defined by the subspace of F} whose elements are
orthogonal to every element of C. If C' = C, then we call C self-dual. The
code C'is called doubly even if the weight of any element in C' is equivalent
to 0 modulo 4. The weight enumerator of C' in genus g is defined by

W =W waeFy = > [ au

Cl,-5Cg€C aGFg

where
ne(ct,. .. cq) = |{i](c1i,. .., cqi) = a}l.
Let p be the combination of the Broué-Enguehard map Th and Igusa’s
homomorphism p. In other word, we can say

W) = pTh(WE))

for a code C. We omit the detail of p and only say that p maps the weight
enumerators in genus ¢ to the ring S(2,2¢g+2). The reader who is interested
in the detail of p can refer to [5]. For every code C used here, the expression
of ﬁ(Wég)) is taken from [5].

We start with g = 1. The weight enumerators of some codes are related
to E-polynomials by the following relations.

AW =27 4y,
PWHD =275 119§ — 273 - 7.

g24

For g = 2, the relation between the weight enumerators and E-polynomials
are the following.



PRy =243 — 3. 273,
W) =271 32571 .1372. 3171 . 2012098 — 271 . 5. 1372 - 3171 - 59651054,

+2718.7.1372. 3171 . 8095 — 279 -3 571 711 - 31 Yehaehyg

+271.3.1372.3171 . 6528737 + 2712 . 7.1372.29 - 3171 - 1490904106

— 27103 1193 + 277 3% 7. 13722
5(ng) =2710. 51,1372, 3171 . 632346 — 279 . 1372 . 3171 . 12143y,

—2710.3.1372. 3171 . 683¢5vs + 270 - 3. 571 11 - 31 Lehaehyg

+2710.32.1372.3171 . 47 - 379397 — 2721372 3171 - 2089¢91)4106

—279.3. 1193 —27° . 3% . 137 %2
5(Wé§2)) =216, 51,1372, 3171 . 2050748 — 2713371 . 7.1372.23. 3171 . 271454y

—27 11 571.1372.23. 3171 . 2275ups + 2713 - 371 . 1372 155414593

+279.371 1372 . 3171 - 4679y hurpg + 277 -5 1371317 - 173y

— 27171372317 . 27743935 — 2701372 3171 - 1399548

+279.371.1372. 3171 212909 0pepg — 270 - 1371 - 3171 - 10Thatbanbig

+2712.3.43¢f +27° 13723171 281 + 2713571 1371 31 Lygyg
5(W§§j) —=2718.371. 57113723172 26794180 — 2716 . 371 . 1372 3172 . 606959 /1)
— 27183711372 3172 1877033 ¢pJab + 2718 . 371 . 1372 . 3172 2817 - 541 ¢Su)]
4271 571137 173172 4871 Sapo + 2717 - 371 1372 31724 2207 - 5779 5harhe
— 271751371 . 3172 . 903827 595 — 271 . 371 . 5. 1372 . 3172 . 107209 pgep2
—2716.371 5. 1372 . 17- 3172 - 59 - 49574pep3abg — 2712 - 7- 1371 - 3172 - 7187 Wh3panbng
+2716.3.5.1372.3172.37-205187¢5¢p; + 2712371 . 5. 1372 . 3172 . 271919 ¢p3ep4 02
+279.1371 173172 43¢ 2ethio + 2710 - 5 7- 1372 3172 - 79319¢91b3 g
+2712.3.1371 . 3172 . 181 - 293 ¢horp3apro — 2710 - 3% - 1943
—2712.371.5.1372. 3172 . 71 - 671938 — 278 - 1371 - 17- 3172 - 2930496010
+276.3.571.3172 . 419%,.



