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This is a fairly precise reproduction of my talk at the conference. My
intention is to present some of our results without going into details, gath-
ering the related ones. We are concerned with the theory of modular forms,
coding theory, invariant theory and theta series.

1. Preliminaries. The notations are standard. Let Sg denote the
Siegel upper-half space and Γg = Sp2g(Z) the Siegel modular group. In the
following, we shall express a typical element M of Sp2g(R) in the form

M =

(
a b

c d

)

by four g × g matrices a, b, c, d. If n is a positive integer, a subgroup
Γg(n) of Γg defined by the condition M ≡ 1 (mod n) is called the principal
congruence group of level n. For an even positive integer n, we shall define
a subgroup Γg(n, 2n) of Γg(n) by the condition (b)0 ≡ (d)0 ≡ 0 (mod 2l),
in which ( · )0 denotes a vector of its diagonal coefficients.

We consider a discrete subgroup Γ of Sp2g(R) which is “commensurable”
with Γg. A holomorphic function ψ on Sg satisfying

ψ((aτ + b)(cτ + d)−1) = det(cτ + d)kψ(τ)

for every element M in Γ is called a modular form of weight k for Γ. In this
definition, we have to assume that ψ is holomorphic at cusps in the case
g = 1. The set of such functions forms a vector space A(Γ)k over C and
the graded ring of modular forms of integral weights for Γ is denoted by

A(Γ) =
⊕

0≤k<∞

A(Γ)k, A(Γ)0 = C.

For a graded ring S = S0 ⊕ S1 ⊕ · · · , we put S(d) = S0 ⊕ Sd ⊕ S2d ⊕ · · ·.
We shall write vectors in Q2g by m and use m′, m′′ to denote the first

and second g coefficients in m. If τ is a point of Sg, the function

θm(τ) =
∑

p∈Zg

exp 2π
√
−1

{
1
2

t(p +
m′

2
)τ(p +

m′

2
) + t(p +

m′

2
)
m′′

2

}

is called the theta-constants of characteristic m.
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2. History on A(Γg), g = 2, 3. First we collect some papers.

[’39 Siegel] Siegel, C.L., Einführung in die Theorie der Modulfunktionen
n-ten Grades, Math. Ann. 116, 617-657 (1939).

[’56 Satake] Satake, I., On the compactification of the Siegel space, J.
Indian Math. Soc., n. Ser. 20, 259-281 (1956).

[’58 Baily] Baily, W.L., Satake’s compactification of Vn, Am. J. Math.
80, 348-364 (1958).

[’57-’58 Cartan] Séminaire de Cartan, Fonctions automorphes, E.N.S. (1957-
1958).

[’60 Igusa] Igusa, J., Arithmetic variety of moduli for genus two, Ann.
Math. (2) 72, 612-649 (1960).

[’62 Igusa] Igusa, J., On Siegel modular forms of genus two, Am. J. Math.
84, 175-200 (1962). The ring A(Γ2)(2) is determined.

[’64-1 Igusa] Igusa, J., On the graded ring of theta-constants, Am. J.
Math. 86, 219-246 (1964). A “fundamental lemma” is given.

[’64-2 Igusa] Igusa, J., On Siged modular forms of genus two II, Am. J.
Math. 86, 392-412 (1964). The fundamental lemma in [’64-1 Igusa] is
used to determine A(Γ2).

[’66 Igusa] Igusa, J., On the graded ring of theta-constants II, Am. J.
Math. 88, 221-236 (1966). The fundamental lemma in [’64-1 Igusa] is
generalized.

[’67 Igusa] Igusa J., Modular forms and projective invariants, Am. J.
Math. 89, 817-855 (1967). The ρ-homomorphism is introduced. The
ring structures A(Γg) for g = 1, 2 are reproved.

[’86 Tsuyumine] Tsuyumine, S., On Siegel modular forms of degree three,
Am. J. Math. 108, 755-862; Addendum 1001-1003 (1986). Using
the ρ-homomorphism, he determined the dimension formula and the
generators of A(Γ3). The relations among the generators are not given.
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In the paper [’62 Igusa], he says, after describing the importance of A(Γg),
“..., we knew very little about this ring beyond the facts that it is finitely
generated and that an operator Φ introduced by Siegel is almost an epimor-
phism of the graded rings of degree n to degree n − 1.” At the time of his
writing [’62 Igusa], it is known

dimA(Γ2)2 = 0,dim A(Γ2)4 = dim A(Γ2)6 = dim A(Γ2)8 = 1,

which are proved by Maass [22] and partly by Witt [39]. Applying the
moduli theory [’60 Igusa] of curves in genus two, he obtains that A(Γ2)(2)

can be generated by Eisenstein series of weights four, six, ten and twelve.
These four Eisenstein series are algebraically independent over C and the
dimension formula of A(Γ2)(2) also follows. In [’64-1 Igusa], he showed that
the graded ring A(Γg(4, 8)) is the normalization of the graded ring C[θmθn]
generated over C by the products of theta-constants with m,n ∈ Z2g i.e.,

A(Γg(4, 8)) = (C[θmθn])N
,

in which N denotes the integral closure of the ring in its field of fractions.
This is called by him a fundamental lemma. In [’64-2 Igusa], it is shown that
the ring C[θmθn] is normal in g = 2, which coincides with A(Γ2(4, 8)) by the
fundamental lemma. Finally Going-down process, i.e., taking successively
the invariant subrings of finite groups, provides A(Γ2). As a consequence,
we know that the ring A(Γ2) can be generated by five elements and that
there is essentially a unique relation among the generators. The explicit
formula of this relation can be found in [’67 Igusa].

The fundamental lemma is generalized in [’66 Igusa] as

A(Γg(r2, 2r2)) = (C[θmθn])N

with rm
2 , rn

2 ∈ Z2g for any even positive integer r. This generalization,
again with Going-down process, enables us to investigate A(Γg(l)) for any
l.

In [’67 Igusa], he defined the ρ-homomorphism from a subring of A(Γg)
to S(2, 2g + 2). We give a quick view on S(2, 2g + 2) later. This ρ-
homomorphism gives a bijection from A(Γ1) to S(2, 4), an injection from
A(Γ2) to S(2, 6). In this way, he obtains the structure theorems of A(Γg), g =
1, 2. In g = 3, he determines the kernel of ρ, which is a principal ideal, and
the vector spaces of low weights. The latter leads to the affirmative an-
swer of a problem of Witt [39], which asks whether two theta series of even
unimodular lattices E2

8 and D+
16 in genus 3 coincide, i.e., whether we have

ϑE2
8

= ϑD+
16

in genus 3. This problem is independently settled by Kneser
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[21]. See also [5]. The problem of Witt in the case of rank 24 is considered
in [12], [5]. Their theorem says that theta series of twenty-four even uni-
modular lattices of rank 24 are linearly independent if and only if g ≥ 12.
We will come back to this problem in the next section.

We conclude this section by describing the graded ring S(2, r) of projective
invariants of a binary form

f = u0x
r + u1x

r−1y + u2x
r−2y2 + · · · + ury

r.

We refer to [36] in more details. Putting f(u, σx) = f(ũ, x) for σ ∈ SL2(C),
we have an irreducible representation of SL2(C) of degree r+1. Under this
representation, we get the invariant ring S(2, r). For example, we consider
f = u0x

2 + u1xy + u2y
2. For

σ =

(
a b

c d

)

we have

σf = u0(ax + by)2 + u1(ax + by)(cx + dy) + u2(cx + dy)2

= (u0a
2 + u1ac + u2c

2)x2 + (2u0ab + u1(ad + bc) + 2u2cd)xy

+ (u0b
2 + u1bd + u2d

2)y2

= ũ0x
2 + ũ1xy + ũ2y

2,

i.e., 


ũ0

ũ1

ũ2


 =




a2 ac c2

2ab ad + bc 2cd

b2 bd d2







u0

u1

u2


 .

The ring S(2, 4) is a set of polynomials f(u0, u1, u2) such that f(ũ0, ũ1, ũ2) =
f(u0, u1, u2) for any (

a b

c d

)

in SL2(C). Investigation (finite generation, ring structures, etc.) of S(n, r)
is one of the main topics in the 19th century. For example,

S(2, 6) = C[A2, B4, C6, D10︸ ︷︷ ︸
alg. indep.

, E15]/
(
E2 − P (A, B,C, D) − Q(A,B, C, D)E

)
,

in which P and Q are certain polynomials. This ring plays an important
role in [’60 Igusa], [’62 Igusa], [’67 Igusa] The ring S(2, 8) is determined by
Shioda [37] as follows:

S(2, 8) = C[J2, J3, J4, J5, J6, J7︸ ︷︷ ︸
alg. indep.

, J8, J9, J10]/{5 relations}.
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This ring is used to determine A(Γ3) in [’86 Tsuyumine]. In the above two
examples, the subscripts denote the degrees of homogeneous polynomials.

3. Coding theory, theta relations, and some graded rings. First
we recall the theory of binary codes. We shall denote by F2 the field of two
elements 0, 1. A subspace of Fn

2 is called a linear code of length n. In the
rest of this note, we omit “linear”. A code C is called self-dual if it coincides
with its dual C⊥ = {x ∈ Fn

2 | x · y =
∑

xiyi = 0, ∀y ∈ C}. A weight wt(x)
of x ∈ Fn

2 is the number of the non-zero coordinates of x. A code C is called
doubly-even if the weight of every element in C is a multiple of 4. If a code
is self-dual and doubly-even, it is said to be Type II. It is known that Type
II codes exist if and only if the length n is a multiple of 8. Two codes is
said to be equivalent if one is obtained from another under some coordinate
change. Classifications of non-equivalent Type II codes are known up to
n = 32 (Pless, Conway, Sloane, see [8] and its references).

n = 8 unique e8

n = 16 2 classes e2
8, d

+
16

n = 24 9 classes

n = 32 85 classes

n ≥ 40 open

We give the first example of Type II code. That is a vector space e8 of
length 8 generated by four elements

(1, 1, 1, 1, 0, 0, 0, 0),
(0, 0, 1, 1, 1, 1, 0, 0),
(0, 0, 0, 0, 1, 1, 1, 1),
(1, 0, 1, 0, 1, 0, 1, 0).

The weight enumerator of C of length n is defined by

WC(x, y) =
∑

v∈C

xn−wt(v)ywt(v).

For example, the weight enumerator of e8 is

We8(x, y) = x8 + 14x4y4 + y8.

The weight enumerator of a code C and that of its dual C⊥ are related as

WC⊥(x, y) =
1
|C|

WC(x + y, x − y),
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in which |C| denotes the cardinality of C. This is called the MacWilliams
identity.

Next we shall consider the graded ring over C generated by the weight
enumerators of Type II codes. This ring coincides with the invariant ring
of the finite group generated by

1√
2

(
1 1
1 −1

)
,

(
1 0
0 i

)
.

This is from [17]. This group is a finite unitary reflection group of order
192, known as No.9 in [38]. The map

x 7−→ θ00(2τ), y 7−→ θ10(2τ)

induces the isomorphism between this invariant ring and A(Γ1)(4), see [6].
In particular, the weight enumerator WC(x, y) of any Type II code C of
length n gives a modular form of weight n/2 for Γ1. If we consider an
index 2 subgroup of No.9, known as No.8 in [38], the invariant ring can
not be generated by the weight enumerators, however, the above map gives
the isomorphism between the invariant ring of this subgroup and the ring
A(Γ1) = A(Γ1)(2).

We introduce the concept of genus in the weight numerators. What we
have stated above corresponds to the case genus one. The weight enumer-
ator of a code C in genus g is defined by

W
(g)
C (xa : a ∈ Fg

2) =
∑

x1,··· ,xg∈C

∏

a∈Fg
2

xna(x1,··· ,xg)
a ,

where
na(x1, · · · , xg) = ]{i|a = (x1i, x2i, · · · , xgi)}.

Here, as we promised, we consider the problem of Witt in coding theory.
The general method to attack this problem is given by Nebe [23]. See
also [32], [10], [26]. There exist 1, 2, 9, 85 classes of Type II codes of
length 8, 16, 24, 32, respectively. For length 16, two weight enumerators
are linearly independent if and only if g ≥ 3. For length 24, nine weight
enumerators are linearly independent if and only if g ≥ 6. For length 32,
eighty-five weight enumerators are linearly independent if and only if g ≥ 10.

The Gleason type theorem for W
(g)
C also holds, i.e., the ring over C gener-

ated by the weight enumerators W
(g)
C of all Type II codes coincides with the

invariant ring of the finite group Gg for any positive integer g. If we consider
a index 2 subgroup Hg of Gg, the invariant ring of Hg is not generated by
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the weight enumerators any more, but Runge [32] showed

A(Γg)(2) ∼= ( C[xa]Hg/{theta relations})
N

.

We omit the precise definitions of these groups. For a Type II code C of
length n, W

(g)
C (θa0(2τ)) is a modular form of weight n/2 for Γg.

Runge([32]. cf. [15]) obtained the following theorem:

A(Γ3) ∼= C[xa]H3/(W (3)

d+
16

− W
(3)

e2
8

).

From this, the dimension formula of A(Γ3) reduces to the computation of
the dimension formula of the invariant ring of H3, i.e.,

∑

d≥0

(dimC A(Γ3)d) t2d =





∑

d′≥0

(
dimC(C[xa]H3)d′

)
td

′



 × (1 − t16).

Note that an exponent of t in the left-hand side is 2d. In [33], the dimension
formula of the invariant ring of H3 is computed and the dimension formula
of A(Γ3) in [’86 Tsuyumine] is reproved.

If we view the works of Igusa and of Runge, we can find the “normalization
type” theorems in both. However, Igusa starts from θm(τ), while Runge
from θm′0(2τ).

Next we shall give some results in genus 4. The degree 24 part of the
invariant ring of H4 is spanned by the weight enumerators of Type II codes
of length 24. There are 9 Type II codes of this length and the dimension of
the vector space over C spanned by the weight enumerators of those codes
is 7, see [25]. On the other hand, the dimension of A(Γ4)12 is 6, see [28]. In
[16], we analysed the map

(C[xa]H4)24 = 〈W (4)
C1

,W
(4)
C2

, · · ·,W (4)
C9

〉C −→ A(Γ4)12

given by xa 7→ θa0(2τ). This linear map is surjective and the kernel is
explicitly described. The obtained relation gives a non-trivial cusp form in
genus 5. It is an open problem if this relation comes from Riemann’s theta
relations.

The same problem in the case of length 32 is treated in [26]. The di-
mension of the degree 32 part of the invariant ring C[xa]H4 is 19, while
the dimension of the corresponding vector space of modular forms is 14.
See [25], [30], respectively. Finally we get 5 relations among theta series
of weight 16 in genus 4. In the course of these computations, we use the
Restriction technique ([29], [30]) to overcome a difficulty which does not
appear in [16].
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The following picture is helpful for understanding what we have said.

code “Construction A”−−−−−−−−−−−→ lattice

C 7→W
(g)
C

y
ytheta

invariant polynomial
xa 7→θa0(2τ)−−−−−−−−→ modular form

For this diagram, see Conway-Sloane [9], Runge [34], Ebeling [11], Bannai-
Ozeki [2], Bannai-Dougherty-Harada-Oura [3], Bannai-Harada-Ibukiyama-
Munemasa-Oura [1], Betsumiya-Choie [4], etc. For Gleason type theorem,
see Runge [34], Rains-Sloane [31] Nebe-Rains-Sloane [24], Chiera [7], etc.

As far as we concerned with even unimodular lattices, A(Γg)(4) might be
suitable. This ring is the normalization of the ring generated over C by
theta series of even unimodular lattices, i.e., A(Γg)(4) = C[ϑ∧]N , see [14].
No normalization is necessary if g ≤ 4, see [35]. Explicit structures are
known as follows.

A(Γ1)(4) = C[E4,∆] by Hecke [18],

A(Γ2)(4) = C[ϑE8 , ϑA24
1

, ϑD+
24

, ϑD+
32

, ϑD+
40

] by Ozeki [27].

Next we consider the ring AZ(Γg) over Z generated by the modular forms
whose Fourier coefficients are all integral. It is known that this ring is
finitely generated over Z, see [13]. Explicit structures are known as follows.

AZ(Γ1) = Z[E4, E6, ∆],

AZ(Γ2) = Z[X4, · · · , X48︸ ︷︷ ︸
15 generators

] by Igusa [20].

We conclude this note by describing a result with Prof.Choie concerning
to the weight enumerators in genus 2. Actually this investigation comes
from a question raised by Prof.Skoruppa when I visited Bordeaux in De-
cember 1998. It is known that the ring over C by the weight enumerators
of Type II codes is generated by five elements W

(2)
e8 ,W

(2)
g24 ,W

(2)

d+
24

,W
(2)

d+
32

,W
(2)

d+
40

.
Therefore the weight enumerator of any Type II code C can be expressed
by these elements. Now, we are interested in the coefficients of polynomial
expressions of the weight enumerators by these five elements. The result
could be stated as follows. Let R be a subring of C. Then the equality

R[W (2)
C ] = R[W (2)

e8
, W (2)

g24
,W

(2)

d+
24

,W
(2)

d+
32

, W
(2)

d+
40

]

holds if and only if

Z[
1
2
,
1
3
,
1
5
,
1
7
,

1
11

,
1
43

] ⊆ R.

In the proof of this theorem, the above identity on AZ(Γ2) is applied.
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