A generalization of the Tutte polynomials *

Tsuyoshi Miezaki ${ }^{\dagger}$ Manabu Oura \ddagger Tadashi Sakuma $\stackrel{\S}{\S}$ and Hidehiro Shinohara ${ }^{〔}$

Abstract

In this paper, we introduce the concept of the Tutte polynomials of genus g and discuss some of its properties. We note that the Tutte polynomials of genus one are well-known Tutte polynomials. The Tutte polynomials are matroid invariants, and we claim that the Tutte polynomials of genus g are also matroid invariants. The main result of this paper and the forthcoming paper declares that the Tutte polynomials of genus g are complete matroid invariants.

Key Words and Phrases. matroid, Tutte polynomial.
2010 Mathematics Subject Classification. Primary 05B35.

1 Introduction

This is an announcement paper.
Let E be a set. A matroid M on $E=E(M)$ is a pair (E, \mathcal{I}), where \mathcal{I} is a non-empty family of subsets of E with the properties

$$
\begin{cases}\text { (i) } & \text { if } I \in \mathcal{I} \text { and } J \subset I, \text { then } J \in \mathcal{I} ; \\ \text { (ii) } & \text { if } I_{1}, I_{2} \in \mathcal{I} \text { and }\left|I_{1}\right|<\left|I_{2}\right|, \\ & \text { then there exists } e \in I_{2} \backslash I_{1} \\ & \text { such that } I_{1} \cup\{e\} \in \mathcal{I} .\end{cases}
$$

[^0]Each element of the set \mathcal{I} is called an independent set. A matroid (E, \mathcal{I}) is isomorphic to another matroid $\left(E^{\prime}, \mathcal{I}^{\prime}\right)$ if there is a bijection φ from E to E^{\prime} such that $\varphi(I) \in \mathcal{I}^{\prime}$ holds for each member $I \in \mathcal{I}$, and $\varphi^{-1}\left(I^{\prime}\right) \in \mathcal{I}$ holds for each member $I^{\prime} \in \mathcal{I}^{\prime}$.

It follows from the second axiom that all maximal independent sets in a matroid M take the same cardinality, called the rank of M. These maximal independent sets $\mathcal{B}(M)$ are called the bases of M. The rank $\rho(A)$ of an arbitrary subset A of E is the cardinality of the largest independent set contained in A.

We provide examples below.
Example 1.1. Let A be a $k \times n$ matrix over a finite field \mathbb{F}_{q}. This offers a matroid M on the set

$$
E=\{z \in \mathbb{Z} \mid 1 \leq z \leq n\}
$$

in which a set I is independent if and only if the family of columns of A whose indices belong to I is linearly independent. Such a matroid is called a vector matroid.

Example 1.2. Let

$$
E=\{z \in \mathbb{Z} \mid 1 \leq z \leq n\}
$$

and r a natural number. We define a matroid on E by taking every r-element subset of E to be a basis. This is known as the uniform matroid $U_{r, n}$.

The classification of the matroids is one of the most important problems in the theory of matroids. One tool to classify the matroids is the Tutte polynomials. Let M be a matroid on the set E having a rank function ρ. The Tutte polynomial of M is defined as follows [2, 3, 4]:

$$
\begin{aligned}
T(M) & :=T(M ; x, y) \\
& :=\sum_{A \subset E}(x-1)^{\rho(E)-\rho(A)}(y-1)^{|A|-\rho(A)} .
\end{aligned}
$$

For example, the Tutte polynomial of the uniform matroid $U_{r, n}$ is

$$
\begin{aligned}
& T\left(U_{r, n} ; x, y\right) \\
& \quad=\sum_{i=0}^{r}\binom{n}{i}(x-1)^{r-i}+\sum_{i=r+1}^{n}\binom{n}{i}(y-1)^{i-r} .
\end{aligned}
$$

It is easy to demonstrate that $T(M ; x, y)$ is a matroid invariant. Two matroids are called T-equivalent if their Tutte polynomials are equivalent.

It is well known that there exist two inequivalent matroids, which are T-equivalent [5, p. 269]. We provide more examples below. Let

$$
E:=\{z \in \mathbb{Z} \mid 1 \leq z \leq n\}
$$

Let us define the subsets X_{1}, X_{2}, X_{3} of E as follows:

$$
\left\{\begin{array}{l}
X_{1}:=\{z \in \mathbb{Z} \mid 1 \leq z \leq r\} ; \\
X_{2}:=\{z \in \mathbb{Z} \mid r+1 \leq z \leq 2 r\} ; \\
X_{3}:=\{z \in \mathbb{Z} \mid r \leq z \leq 2 r-1\} .
\end{array}\right.
$$

Let $R_{r, n}$ denote the matroid on E such that

$$
\mathcal{B}\left(R_{r, n}\right)=\mathcal{B}\left(U_{r, n}\right) \backslash\left\{X_{1}, X_{2}\right\},
$$

$Q_{r, 2 n}$ denote the matroid on E such that

$$
\mathcal{B}\left(Q_{r, n}\right)=\mathcal{B}\left(U_{r, n}\right) \backslash\left\{X_{1}, X_{3}\right\} .
$$

Then, for $2 r \leq n, r \geq 3, R_{r, n}$ and $Q_{r, n}$ are matroids. Both matroids have exactly two dependent sets of size r, namely $\left\{X_{1}, X_{2}\right\}$ of $R_{r, n}$ and $\left\{X_{1}, X_{3}\right\}$ of $Q_{r, n}$. Therefore, if $R_{r, n}$ and $Q_{r, n}$ are isomorphic, there exists φ such that

$$
\varphi\left(\left\{X_{1}, X_{2}\right\}\right)=\left\{X_{1}, X_{3}\right\}
$$

This is a contradiction since φ is bijective, and we know that $R_{r, n}$ and $Q_{r, n}$ are non-isomorophic matroids.

On the other hand,

$$
T\left(R_{r, n}\right)=T\left(Q_{r, n}\right)
$$

In fact, the difference between

$$
T\left(U_{r, n}\right)-T\left(R_{r, n}\right)
$$

and

$$
T\left(U_{r, n}\right)-T\left(Q_{r, n}\right)
$$

are zero since $R_{r, n}$ and $Q_{r, n}$ are obtained from $U_{r, n}$ after deleting the two maximal independent sets.

This gives rise to a natural question: is there a generalization of the Tutte polynomial which identifies such T-equivalent but inequivalent matroids? This paper aims to provide a candidate generalization that answers this. In Section 2, we provide the concept of the Tutte polynomial of genus g. In Section 3, we provide the main results. The details of the proofs will be presented in our forthcoming paper [1].

2 Tutte polynomials of genus g

We now present the concept of the Tutte polynomial of genus g.
Definition 2.1. Let $M:=(E, \mathcal{I})$ be a matroid. Let

$$
\Lambda_{1}:=\{z \in \mathbb{Z} \mid 1 \leq z \leq g\}
$$

and let

$$
\Lambda_{2}:=\binom{\Lambda_{1}}{2}
$$

For every element $\lambda \in \Lambda_{2}$, let us denote

$$
A_{\cap(\lambda)}:=\cap_{i \in \lambda} A_{i} \text { and } A_{\cup(\lambda)}:=\cup_{i \in \lambda} A_{i} .
$$

Then, the genus g of the Tutte polynomial $T^{(g)}(M)$ of the matroid M will be defined as follows:

$$
\begin{array}{r}
T^{(g)}(M):=T^{(g)}\left(M ; x_{\lambda_{1}}, y_{\lambda_{1}}, x_{\cap \lambda_{2}}, y_{\cap \lambda_{2}},\right. \\
\left.x_{\cup \lambda_{2}}, y_{\cup \lambda_{2}}: \lambda_{1} \in \Lambda_{1}, \lambda_{2} \in \Lambda_{2}\right) \\
\sum_{A_{1}, \ldots, A_{n} \subseteq E} \prod_{\lambda \in \Lambda_{1}}\left(x_{\lambda}-1\right)^{\rho(M)-\rho\left(A_{\lambda}\right)} \\
\left(y_{\lambda}-1\right)^{\left|A_{\lambda}\right|-\rho\left(A_{\lambda}\right)} \\
\prod_{\lambda \in \Lambda_{2}}\left(x_{\cap(\lambda)}-1\right)^{\rho(M)-\rho\left(A_{\cap(\lambda)}\right)} \\
\left(y_{\cap(\lambda)}-1\right)^{\left|A_{\cap(\lambda)}\right|-\rho\left(A_{\cap(\lambda)}\right)} \\
\prod_{\lambda \in \Lambda_{2}}\left(x_{\cup(\lambda)}-1\right)^{\rho(M)-\rho\left(A_{\cup(\lambda)}\right)} \\
\left(y_{\cup(\lambda)}-1\right)^{\left|A_{\cup(\lambda)}\right|-\rho\left(A_{\cup(\lambda)}\right) .}
\end{array}
$$

It is easy to demonstrate that $T^{(g)}(M)$ is matroid invariant and if two matroids have the same Tutte polynomial for genus g, we call them $T^{(g)}$ equivalent. For example, the genus 2 for the Tutte polynomial $T^{(2)}(M)$ of the matroid M is as follows:

$$
\begin{gathered}
T^{(2)}\left(M ; x_{1}, x_{2}, y_{1}, y_{2}, x_{\cap\{12\}}, y_{\cap\{12\}}, x_{\cup\{12\}}, y_{\cup\{12\}}\right) \\
=\sum_{A_{1}, A_{2} \subset E}\left(x_{1}-1\right)^{\rho(E)-\rho\left(A_{1}\right)} \\
\\
\left(x_{2}-1\right)^{\rho(E)-\rho\left(A_{2}\right)} \\
\\
\left(y_{1}-1\right)^{\left|A_{1}\right|-\rho\left(A_{1}\right)} \\
\\
\left(y_{2}-1\right)^{\left|A_{2}\right|-\rho\left(A_{2}\right)} \\
\\
\left(x_{\cap\{1,2\}}-1\right)^{\rho(E)-\rho\left(A_{1} \cap A_{2}\right)} \\
\\
\left(y_{\cap\{1,2\}}-1\right)^{\left|A_{1} \cap A_{2}\right|-\rho\left(A_{1} \cap A_{2}\right)} \\
\\
\left(x_{\cup\{1,2\}}-1\right)^{\rho(E)-\rho\left(A_{1} \cup A_{2}\right)} \\
\\
\left(y_{\cup\{1,2\}}-1\right)^{\left|A_{1} \cup A_{2}\right|-\rho\left(A_{1} \cup A_{2}\right)} .
\end{gathered}
$$

We remark that for $g \in \mathbb{N}_{>2}$, the specialization of $T^{(g)}(M)$ is $T^{(g-1)}(M)$. For example,

$$
T^{(2)}\left(M ; x_{1}, 2, y_{1}, 2,2,2,2\right)=2^{|E|} T^{(1)}\left(M ; x_{1}, y_{1}\right)
$$

Therefore, if

$$
T^{(g)}(M)=T^{(g)}\left(M^{\prime}\right)
$$

then

$$
T^{(i)}(M)=T^{(i)}\left(M^{\prime}\right),
$$

for all $1 \leq i \leq g$.

3 Main results

The main result of the present paper is as follows:
Theorem 3.1. 1. The Tutte polynomial of genus $g\left\{T^{(g)}\right\}_{g=1}^{\infty}$ is a complete invariant for matroids.
2. For $2 r \leq n, r \geq 3$,

$$
T^{(2)}\left(R_{r, n}\right) \neq T^{(2)}\left(Q_{r, n}\right)
$$

3. Let

$$
E:=\{z \in \mathbb{Z} \mid 0 \leq z \leq 4 n-1\} .
$$

with $n \geq 3$. Let us define the subsets Y_{1}, Y_{2} of 2^{E} as follows:

$$
\begin{aligned}
Y_{1} & :=\{\{0,1,2\},\{2,3,4\}, \ldots, \\
& \{2 n-4,2 n-3,2 n-2\}, \\
& \{2 n-2,2 n-1,0\}, \\
& \{2 n, 2 n+1,2 n+2\}, \\
& \{2 n+2,2 n+3,2 n+4\}, \ldots, \\
& \{4 n-4,4 n-3,4 n-2\}, \\
& \{4 n-2,4 n-1,2 n\}\}, \\
Y_{2} & :=\{\{0,1,2\},\{2,3,4\}, \ldots, \\
& \{2 n-4,2 n-3,2 n-2\}, \\
& \{2 n-2,2 n-1,2 n\}, \\
& \{2 n, 2 n+1,2 n+2\}, \\
& \{2 n+2,2 n+3,2 n+4\}, \ldots, \\
& \{4 n-4,4 n-3,4 n-2\}, \\
& \{4 n-2,4 n-1,0\}\} .
\end{aligned}
$$

Let $S_{4 n}$ denote the independence system on E such that

$$
\mathcal{B}\left(S_{4 n}\right)=\mathcal{B}\left(U_{3,4 n}\right) \backslash Y_{1},
$$

$S_{4 n}^{\prime}$ denote the independence system on E such that

$$
\mathcal{B}\left(S_{4 n}^{\prime}\right)=\mathcal{B}\left(U_{3,4 n}\right) \backslash Y_{2} .
$$

Then, $S_{4 n}$ and $S_{4 n}^{\prime}$ are matroids. Let

$$
m_{1}=\left\lfloor\frac{-1+\sqrt{1+8 n}}{2}\right\rfloor \text { and } m_{2}=2\lceil\sqrt{n}\rceil .
$$

We have

$$
\left\{\begin{array}{l}
T^{\left(m_{1}\right)}\left(S_{4 n}\right)=T^{\left(m_{1}\right)}\left(S_{4 n}^{\prime}\right) \\
T^{\left(m_{2}\right)}\left(S_{4 n}\right) \neq T^{\left(m_{2}\right)}\left(S_{4 n}^{\prime}\right)
\end{array}\right.
$$

In particular, for a matroid $M, T^{(|\mathcal{B}(M)|)}(M)$ determines M. For detailed explanation, see [1].

Acknowledgments

This work was supported by JSPS KAKENHI (18K03217, 17K05164, 18K03388).

References

[1] T. Miezaki, M. Oura, T. Sakuma, H. Shinohara, The Tutte polynomials of genus g, in preparation.
[2] W. T. Tutte, A ring in graph theory, Proc. Cambridge Philos. Soc., 43:26-40, 1947.
[3] W. T. Tutte, A contribution to the theory of chromatic polynomials, Canadian J. Math., 6:80-91, 1954.
[4] W. T. Tutte, On dichromatic polynomials, J. Combinatorial Theory, 2:301-320, 1967.
[5] D. J. A. Welsh, Matroid Theory, Academic Press, London, 1976.

[^0]: *This work was supported by JSPS KAKENHI(18K03217, 17K05164, 18K03388).
 †Faculty of Education, Ryukyu University, Okinawa, 903-0213, Japan
 ${ }^{\ddagger}$ Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa 920-1192, Japan
 ${ }^{\text {§}}$ Faculty of Science, Yamagata University, Yamagata 990-8560, Japan
 ${ }^{\top}$ Institute for Excellence in Higher Education, Tohoku University, Miyagi 980-8576, Japan

