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Type II Codes, Even Unimodular
Lattices, and Invariant Rings

Eiichi Bannai, Steven T. Dougherty, Masaaki Harada, and Manabu Oura

Abstract—In this paper, we study self-dual codes over the
ring 2k of the integers modulo 2k with relationships to even
unimodular lattices, modular forms, and invariant rings of finite
groups. We introduce Type II codes over 2k which are closely
related to even unimodular lattices, as a remarkable class of
self-dual codes and a generalization of binary Type II codes. A
construction of even unimodular lattices is given using Type II
codes. Several examples of Type II codes are given, in particular
the first extremal Type II code over 6 of length 24 is constructed,
which gives a new construction of the Leech lattice. The complete
and symmetrized weight enumerators in genusg of codes over 2k

are introduced, and the MacWilliams identities for these weight
enumerators are given. We investigate the groups which fix these
weight enumerators of Type II codes over 2k and we give the
Molien series of the invariant rings of the groups for small cases.
We show that modular forms are constructed from complete and
symmetrized weight enumerators of Type II codes. Shadow codes
over 2k are also introduced.

Index Terms—Codes over 2k, even unimodular lattices, in-
variant rings, Type II codes.

I. INTRODUCTION

RECENTLY there has been interest in self-dual codes
over finite rings, especially, the ring of integers

modulo . The best known nonlinear binary codes such as
the Nordstrom–Robinson, Kerdock, Preparata, Goethals, and
Delsarte–Goethals codes contain more codewords than any
known linear codes with the same minimum distance. A simple
relationship between these nonlinear binary codes and self-
dual codes over was discovered by Hammons, Kumar,
Calderbank, Sloane, and Solé [14]. Moreover, similarly to
binary self-dual codes, it was shown that self-dual codes over

are closely related to unimodular lattices via Construction
A [2], in particular, any extremal Type II code of length

gives an alternative construction of the Leech lattice. The
notion of Type II codes over was introduced in [3]. More
recently as simple generalizations, cyclic self-dual codes over

, especially the lifted Hamming and Golay codes, have
been investigated in [4] and Type II codes over have been
studied in [9]. It is natural to consider the ring for cyclic
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codes since the Hensel lift plays an important role; however,
there is no need to restrict the order of rings when considering
an application to unimodular lattices. The Chinese remainder
theorem is a useful tool to investigate codes over[11].

In this paper, we study self-dual codes over In Section
II, we give definitions and some basic facts. We also introduce
Type II codes over as a remarkable class of self-dual
codes then we show such codes are closely related to even
unimodular lattices in Section III. This relationship provides a
number of properties of Type II codes. In Section IV, several
examples of extremal self-dual codes are constructed giving
construction methods. For example, the first extremal Type
II code over of length is constructed, which gives a
new construction of the Leech lattice. Section V introduces
the complete and symmetrized weight enumerators in genus

of codes over The MacWilliams identities for those
weight enumerators are provided. We also investigate the
groups which fix weight enumerators of Type II codes over

Section VI investigates shadow codes of Type I codes
over In Section VII, modular forms are constructed from
weight enumerators of Type II codes. In Section VIII, we give
the Molien series for the invariant rings corresponding to the
complete and symmetrized weight enumerators in genusof
Type II codes over for small and

II. DEFINITIONS AND BASIC FACTS

In this section, we first give the definitions used throughout
this paper. Then we introduce Type II codes. Some basic
properties of the Euclidean weight are also given.

A linear code of length over is an additive
subgroup of A nonlinear code of length is simply
a subset of In this paper, we consider only linear codes.
An element of is called a codeword of A generator
matrix of is a matrix whose rows generate TheHamming
weight of a vector in is the number of nonzero
components. TheEuclidean weight of a vector

is

The Lee weight of a vector is

The Hamming, Lee, and Euclidean distances ,
, and between two vectors and are
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, , and , respectively. The
minimum Hamming, Lee, and Euclidean weights,
and of are the smallest Hamming, Lee, and Euclidean
weights among all nonzero codewords of, respectively.

We define the inner product of and in by

where and The dual code
of is defined as

for all

is self-orthogonalif and is self-dualif
We define aType II code over as a self-dual code with
Euclidean weights divisible by For , this is the
standard definition of binary Type II codes. For the
original definition given in [3] requires that the code contains
the all-one vector as well; however, recently it has been shown
in [16] that such a Type II code in terms of [3] is equivalent
to a Type II code by our definition. Self-dual codes which are
not Type II are said to beType I.

For some applications, there is often no need to distinguish
between and components of codewords, and we say
that two codes areequivalentif one can be obtained from the
other by permuting the coordinates and (if necessary) changing
the signs of certain coordinates. Codes differing by only a
permutation of coordinates are calledpermutation-equivalent.

The complete weight enumerator(cwe for short) of a code
over is defined as

cwe

where is the number of components of , respectively.
Permutation-equivalent codes have the identical cwe’s but
equivalent codes may have different cwe’s. The appropriate
weight enumerator for equivalent codes is thesymmetrized
weight enumerator(swe for short) defined as

swe

where are the numbers of
components of , respectively.

Let be the set of integers less than that
divide , and arranged so that for Note that this
implies Any code over is permutation-equivalent
to a code with generator matrix of the form

...
...

...
. . .

...
...

...
...

. ..
. . .

. . .
...

(1)

where are binary matrices for A code of this form
is said to be ofrank and it has

codewords.
We now give basic properties of Euclidean weights over

Lemma 2.1:Let be a vector in Then

Proof: Follows from the definition of the Euclidean
weight.

Lemma 2.2:Let be a generator matrix of a code
Suppose that the rows of are vectors in with Euclidean
weight a multiple of with any two rows orthogonal. Then
is a self-orthogonal code with all Euclidean weights a multiple
of

Proof: Let be the th row of By Lemma 2.1

(2)

This shows the lemma.

By the above lemma, it is sufficient to obtain the Euclidean
weights of all the rows in a generator matrix of a code
when we check if is Type II.

We now introduce the notion of shadows for Type I codes
over We first define a specific coset of a Type I code

over in order to define the shadows. The-weight
subcode of a Type I code is the set of codewords of
of Euclidean weights divisible by

Lemma 2.3:The subcode is a linear subcode of index
in

Proof: By (2), the sum of two codewords in is in
Every vector in has a Euclidean weight divisible by
By (2) we see that is of the form

where is any codeword of of Euclidean weight congruent
to and that translation by is a one to one map
from onto

Define theshadowof as The shadows for
binary Type I codes were introduced by Conway and Sloane
[6]. This notion was applied to Type I codes over in [10].
Unlike the binary case, is not necessarily isomorphic
to the Klein -group; it may be isomorphic to either the Klein
-group or the cyclic group of order.

III. EVEN UNIMODULAR LATTICES AND TYPE II CODES

Let be an -dimensional Euclidean space with the inner
product

for and

An -dimensional lattice in is a free -module spanned
by linearly independent vectors An by matrix
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whose rows are the vectors is called a generator
matrix of The fundamental volume of is
For a sublattice it holds that
A lattice is integral if An integral lattice with

(or ) is called unimodular. If the norm
is an even integer for all , then is calledeven.

Unimodular lattices which are not even are calledodd. The
minimum norm of is the smallest norm among all nonzero
vectors of

Applying [7, Construction A] to Type II codes over , we
have the following construction of even unimodular lattices.
Let be a map from to sending to
and to respectively.

Theorem 3.1:If is a self-dual code of length over ,
then the lattice

is an -dimensional unimodular lattice, where

The minimum norm is where is the
minimum Euclidean weight of Moreover, if is Type II
then the lattice is an even unimodular lattice.

Proof: If then
where and for and . Since is
self-dual, the inner product of and is

thus is integral. In addition, if is Type II then the
Euclidean weights are divisible by Then we have

so that the lattice is even.
Consider the lattice , then

Since and
we have Then and

is unimodular.
It is easy to see that

where Thus the minimum norm is

Theorem 3.1 provides much information on Type II codes
over For example, the following corollary characterizes
divisible self-dual codes over in terms of their Euclidean
weights.

Corollary 3.2: Suppose that is a self-dual code over
which has the property that every Euclidean weight is a

multiple of a positive integer. Then the largest positive integer
is either or

Proof: If a unimodular lattice has the property that every
norm is a multiple of some positive integerthen is either

or (cf. [19]). If is self-dual then is unimodular.
Thus must be either or

Remark: Type I and II codes correspond to odd and even
unimodular lattices, respectively.

Moreover, Theorem 3.1 gives a restriction of the length of
a Type II code.

Corollary 3.3: If there exists a Type II code of length
over , then is a multiple of eight.

Proof: An even unimodular lattice of dimensioncan be
constructed from by Theorem 3.1. Even unimodular lattices
exist if and only if the dimension is a multiple of eight. Thus

must be a multiple of eight.

Now let us consider the converse assertion of Corollary 3.3.

Proposition 3.4: There exists a Type II code of length
over if and only if is a multiple of eight.

Proof: Consider the matrix

where is the identity matrix of order and

then over where denotes
the transpose matrix of a matrix From Lagrange’s theorem
on sums of squares, there are elements of such that

for any with The integers
are necessarily less than or equal toso there exists
of such that for

Therefore, these elements of give that the
matrix generates a Type II code of lengthover
for any positive Note that Calderbank and Sloane [4] gave
the lifted Hamming codes which are Type II codes of length
for

The above Type II codes of length give different con-
structions for the Gosset lattice which is the unique
eight-dimensional even unimodular lattice.

We now investigate the minimum Euclidean weight of Type
II codes over The minimum norm of an -dimensional
even unimodular lattice is bounded by
and even unimodular lattices with are
called extremal(cf. [7]). The minimum norm of the lattices
constructed from Type II codes gives directly an upper
bound on the minimum Euclidean weight of

Corollary 3.5: Let be the minimum Euclidean weight of
a Type II code of length over If , then

(3)
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Proof: Suppose that there exists a Type II codewith
minimum Euclidean weight The mini-
mum norm of the even unimodular lattice constructed
from is From the assumption,

, which is a contradiction.

Remark: When and , the above bound (3) holds
without the assumption (cf. [3], [18]). For

and , (3) is a bound for binary doubly-even self-
dual codes and Type II codes over Thus the following
conjecture is natural.

Conjecture 3.6:The minimum Euclidean weight is
bounded by for all

When , we say that Type II codes over
with areextremalfor

Recently Rains and Sloane [21] have proved that the min-
imum norm of of an -dimensional unimodular lattice is
bounded by unless when

Corollary 3.7: Let be the minimum Euclidean weight
of a Type I self-dual code of length over If

, then

(4)

When , Type I codes over meeting
the above bound (4) with equality are calledextremal.

Remark: It is natural to define the Euclidean weights of
the elements of as

respectively. If is a self-dual code
over then the lattice in Theorem 3 is a unimodular
lattice. However, even if is a self-dual code with all vectors
having Euclidean weight a multiple of , then is not
always even. For example, the Euclidean weight of a vector

over is but the norm is . Moreover, the sum of
two even vectors in is not necessarily an even vector;
for example, the sum of and itself in is which
is not even. Thus in this paper we consider Type II codes over

for only even numbers

IV. EXTERNAL SELF-DUAL CODES

A. Extremal Type II Codes Over and

The most remarkable length for extremal Type II codes
is , because of the connection with the Leech lattice.
Several inequivalent extremal Type II codes over have
been constructed. The first extremal Type II codes over
are constructed here for and .

Lifted Golay codes over are given in [4]. We consider
a code of length over constructed from the cyclic
code with generator polynomial

by appending to the last coordinate of the generator vectors.
The code is Type II and mod
is the binary Golay code. is constructed from binary and
ternary cyclic codes.

The swe of the above Type II code is

swe
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Thus is an extremal Type II code of length over
Applying Theorem 3.1 to , the Leech lattice is constructed.

Recently, some new -designs have been constructed
from the lifted Golay code over (cf. [15]). In addition,
any extremal Type II code of length with the same
symmetrized weight enumerator as the lifted Golay code
contains -designs (cf. [1]). is the binary Golay
code and is an extremal ternary self-dual
code. Thus the four sets of the codewords corresponding
to and form
-designs. However, we have verified by computer that

sets of the codewords corresponding to
and do not

form -designs.
Now we investigate Type II codes of length over

The lifted Golay codes of length over were constructed
from the binary Golay code by the Hensel lifting (cf. [4]). The
Golay codes are Type II codes, however, the Golay code over

is not extremal (cf. [9]). In addition, it was shown in [9]
that there is no extremal double circulant Type II code over
of length . Thus we consider Type II codes of another type.
For , a generator matrix of an extremal Type II code over

gives a generator matrix of the Leech lattice. Thus it is
natural to investigate generator matrices of the Leech lattice. A
generator matrix of the Leech lattice is given in [7, Fig. 4.12].
The generator matrix gives a by matrix over
It is easy to see that the matrix generates a Type II code
of length . In addition, since the following matrix:

generates the Leech lattice, the matrix must generate an
extremal Type II code of rank It seems that this
code is the first extremal Type II code of length over

Proposition 4.1: There exist extremal Type II codes of
length over for

This gives the following question.

Question: Is there an extremal Type II code of length
over for ?

B. Methods to Construct Self-Dual Codes

Here we present methods to construct self-dual codes over

Proposition 4.2: Let be a generator matrix of a Type
II code with rank over of length containing
the all-one vector where is the th row of Let be a
set consisting of columns of where Assume
that or is even. Let be a -vector
where if and otherwise. Let be a
matrix which has theth row

if
otherwise

where denotes the Euclidean weight ofand is the all-
one’s vector. Then the matrix generates a Type
II code

Proof: We have Moreover,
if , then

Thus a row of is orthogonal to itself and the
Euclidean weights of all the rows of are divisible by In
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addition, the th row of can be written as

Since contains the all-one vector,
This we have

Therefore, the code is self-dual.
The Euclidean weight of a row of is divisible by

and is self-dual. Thus it follows from Lemma 2.2 that the
Euclidean weight of every codeword of the code is divisible
by

Starting with one generator matrix, one can construct a
number of Type II codes which might be inequivalent codes.

Corollary 4.3: Let the assumptions and notations be the
same as ones of Proposition 4.2. Let be a matrix which
has the th row

if
otherwise.

Then the matrix generates a Type I code

Remark: We gave methods to construct Types I and II
codes from certain Type II codes. Similarly, one can easily
get similar methods to construct Types I and II codes from
Type I codes of length

As an example, we construct an extremal Type I code over
of length . An extremal Type II code over with

generator matrix of the form

...

where is a by circulant matrix with first row
is given in [5]. By Corollary 4.3, Type I codes

are constructed from When , it is easy to see
that its generator matrix is

...

and the minimum Euclidean weight of this code is, thus
this is an extremal Type I code over of length . By
Theorem 3.1, this code yields the 24-dimensional unique odd
unimodular lattice with minimum norm which is called the
odd Leech lattice. Other extremal Type I codes of length
are constructed in [13].

V. WEIGHT ENUMERATORS, MACWILLIAMS

IDENTITIES, AND INVARIANTS

In this section, we introduce several types of weight enu-
merators of codes over For these weight enumerators,
we establish the MacWilliams identities and study invariants.
From now on denotes the ring

A. Weight Enumerators and MacWilliams Identities

First let us fix the notations. We denote the primitiveth
root of unity by for matrices
and , where denotes the transpose of

Definition 1: (Complete Weight Enumerators in Genus):
For a code over , we define the complete weight enumer-
ator in genus by

with

where denotes the number ofsatisfying

Remark:

1) For the case , these weight enumerators are the
same as ordinary complete weight enumerators defined
in Section II.

2) For the case , these weight enumerators were
introduced in [12] and [23].

We define a relation in by

or

where Then the relation becomes an equivalence
relation in and we denote the natural projection using the
conventions Note that and

Definition 2 (Symmetrized Weight Enumerators in Ge-
nus ): For a code over , we define the symmetrized
weight enumerator in genus by

with

where denotes the number ofsatisfying

Remark: For the case , these weight enumerators are
the same as ordinary symmetrized weight enumerators defined
in Section II.

From now on, we often write complete and symmetrized
weight enumerators in genus by , re-
spectively, for simplicity.

We have theMacWilliams identityfor the complete weight
enumerators. Here we consider that anby matrix acts
on the polynomial ring naturally, that is,

where and
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Theorem 5.1 (MacWilliams Identity):For a code over
we have

where

Similarly, we have theMacWilliams identityfor the sym-
metrized weight enumerators.

Corollary 5.2 (MacWilliams Identity):For a code , we
have

where

and

B. Invariant Rings

In this subsection, we study the invariance properties of
complete and symmetrized weight enumerators.

We define a subgroup of as

runs over all

integral symmetric matrices

where

with

Theorem 5.3:For any Type II code over , the complete
weight enumerator in genusis invariant under the action of
the group

Proof: We have only to check three types of generators,
and The invariance property of comes from

Corollary 3.3 and Theorem 5.1. We shall show that

We have

In order to prove the theorem, we have to show

For any element , we have

and

follows from the calculation There-
fore, it turns out that

This completes the proof of the theorem.

Remark:

1) is (up to the homomorphic image of the
modular group under the theta representation of index

(cf. [24]).
2) Theorem 5.3 says that the ring generated by complete

weight enumerators for Type II codes is contained in
the invariant ring of the group For , the two
rings coincide (cf. Theorem 3.6 in [23]).

We now define a subgroup of as

runs over all

integral symmetric matrices

where

and with

Similarly, to complete weight enumerators, we have the
following MacWilliams identity for symmetrized weight enu-
merators in genus

Corollary 5.4: For any Type II code over , the sym-
metrized weight enumerator in genusis invariant under the
action of the group

In concluding this subsection, we would like to emphasize
that the groups , as well the groups , , and

, are all finite groups. This is explained as follows. Here
we assume that the reader is familiar with some of the basic
concepts of theta functions, such as given in Runge [24].

The group runs over all integral symmet-
ric matrices acts linearly on the space spanned by the theta
constants of index , where

Note that here
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TABLE I
ORDERS OF THEGROUPSGg;k; Hg;k; G

8

g;k; AND H8

g;k

k 1 2 3 4 5 6 7 8

jG1;kj
jH1;kj
jG8

1;kj

jH8

1;kj

96

96

192

192

384

384

1536

768

2304

1152

4608

2304

3072

3072

12288

6144

11520

5760

23040

11520

9216

9216

368648

18432

32256

16128

64512

32256

24576

24576

98304

49152

It is known that the group is a homomorphic
image of the Siegel modular group under the
theta representation of index

in the notation of [24]. The kernel of this representation
is completely described in Runge [24, Theorem 2.4]. In
particular, this kernel contains the subgroup Since

is a finite group, the finiteness of
the group follows immediately.

Similarly, the group as aboveacts linear-
ly on the space spanned by the theta functions of
index , where

Again, is a homomorphic image of
under the theta representation

in the notation of [24]. From the relation

it is again proved that is in the kernel of the theta
representation, see, e.g., Runge [24] or Kac [17, Theorem
13.5, p. 169]. Since the group is finite and since

, we have the finiteness of the
group The finiteness of the groups and are
immediately obtained as

and

Although we will not discuss the details here, it is possible
to determine the orders and the structures of the groups

, , , and more explicitly, by using the
known explicit determinations of the kernels of the theta
representations

given in Runge [24].
We give in Table I the orders of the groups , ,

, and for and It can be shown, for
example, that

VI. SHADOWS AND WEIGHT ENUMERATORS

We first prove that the complete (respectively, symmetrized)
weight enumerator of the shadow of a Type I codeover

is uniquely determined from the complete (respectively,
symmetrized) weight enumerator of

Lemma 6.1: If is a Type I code over then

cwe

swe

swe

swe

swe

swe

where denotes the primitive th root of unity.
Proof: Let be a codeword in then

Since is self-dual, has Euclidean weight
Since

if

if

This proves the lemma. The swe is computed from the cwe.

Theorem 6.2:Let be a Type I code over and let
be its shadow. Then the cwe and swe ofis related to the
cwe and swe of by the relation

cwe cwe

swe swe

where is the by matrix with

and is the by matrix with

where if or
Proof: We proceed as in [6, p. 1323] by computing first

by the MacWilliams identity

cwe

cwe

where is the by matrix with , the
cwe of , then the cwe of its -weight subcode, the cwe of
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the dual of the latter, and, finally, the cwe of the shadow by
the difference of the cwe of and the cwe of The swe
follows similarly.

Definition 3 (Complete Joint Weight Enumerators):The
complete joint weight enumerator for codes and of
length over is defined as

where and
Similarly to complete weight enumerators,

we often simply denote the weight enumerators by
In a similar argument to Theorem 5.1, we have the

MacWilliams identity for complete joint weight enumerators.

Theorem 6.3 (MacWilliams Identity):Let denote either
or Then

where

and if
if

Proof: Similar to that of Theorem 5.1.

We give relationships between a Type I code and its shadow
using the weight enumerators.

Given the complete joint weight enumerator for we
can find and

Proposition 6.4: Let be a Type I code over and let
be the -weight subcode of Then

where

and

for
Proof: Notice that the substitution fixes each

monomial representing codewords with Euclidean weight
divisible by and negates each monomial representing
codewords whose Euclidean weight , which
gives the result. The remaining two cases are similar.

We can apply the MacWilliams identity to find all the joint
weight enumerators involving and In particular
we have the following

Proposition 6.5: Let be a Type I code over and let
be its shadow then

Proof: We compute and by the
above theorem, apply the MacWilliams identity, and then
compute the desired weight enumerators from these weight
enumerators.

Lemma 6.1, Theorem 6.2, as well as Propositions 6.4
and 6.5 determine complete, symmetrized, and joint weight
enumerators for and from ones of For the code to
exist all of these weight enumerators must have nonnegative
integral coefficients. Our results seem to be useful for proving
the nonexistence of a certain Type I code over In fact, for
the case , the nonexistence of some Type I codes with
high minimum weight was proved in [6] using their shadows.

VII. CONSTRUCTION OFSIEGEL MODULAR FORMS

We first recall the notations of theta functions (for more
detail, see, e.g., [24])

where denotes the Siegel upper half-space

We define for any positive integer the following theta
functions:

It is well known that the modular group is
generated by the elements and , where

runs over the symmetric by matrices. They act on the
theta functions as follows:

Moreover, the theta functions for a latticeare defined by

where
A Siegel modular form of weight for is

a holomorphic function on the Siegel upper half-space such
that for all we have

We need more conditions for the case
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Theorem 7.1:Let be a Type II code of length over
and let be the even unimodular lattice constructed from

by Theorem 3.1. Then

and these functions give Siegel modular forms of weight
for

VIII. M OLIEN SERIES FORSMALL CASES

The weight enumerator of a self-dual code belongs to the
ring of polynomials fixed by the group of substitutions. In this
section, we give the Molien series for the invariant rings of
the groups of small and

First, let us recall the general invariant theory of finite
groups. Let be a finite subgroup of Then
acts on the polynomial ring for short)
naturally, i.e.,

where and There exists a
homogeneous system of parameters such that the
invariant ring is a finitely generated free -
module. The invariant ring has theHironaka decomposition

The invariant ring is an graded ring and the dimension
formula is defined by

where is the th homogeneous part of The
dimension formula for theHironaka decompositiongiven in
the above form is

In general, the converse is not true. It is known that we have
the identity

This was shown by Molien and is calledMolien series.
We recall the notations

with

with

where with

In the following, we give the Molien series in the form

the expansion

the Hironaka decomposition

the Hironaka decomposition with

factored numerators.

If the numerator is irreducible, we omit the third line for each
case.

and

and

and

and

and
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and

and

and

and

and

Remark: The Molien series and were
determined by Runge [22] and Oura [20], respectively.

Finally, we describe the invariant rings for these Molien
series. We first consider the Hamming weight enumerators
of binary Type II codes. In this case, the invariant ring for

is generated by the weight enumerators of the extended

Hamming code and the extended Golay
code. Now let us consider complete and symmetrized weight
enumerators of Type II codes over In [3], the invariant
ring for was investigated under the condition that Type
II codes contain all-one vector, that is, they investigated the
invariant ring for the group generated by and the
matrix

The group has the same order as Thus the invariant
ring for is

where and are the symmetrized weight enu-
merators of Type II codes and
the lifted Golay code over For the complete weight
enumerators, a Magma computation shows that the invariant
ring of has the homogenous system of parameters of
degrees and . This means that the invariant ring has
exactly the Molien series of the form

Let be the ring generated by theth complete weight
enumerators of Type II codes of lengthWe have verified by
computer that and , however,
we have checked only Thus it is not known
if the invariant ring for is generated by the complete
weight enumerators of Type II codes over
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