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Type Il Codes, Even Unimodular
Lattices, and Invariant Rings

Eiichi Bannai, Steven T. Dougherty, Masaaki Harada, and Manabu Oura

Abstract—In this paper, we study self-dual codes over the codes since the Hensel lift plays an important role; however,
ring Z,; of the integers modulo 2k with relationships to even there is no need to restrict the order of rings when considering
unimodular lattices, modular forms, and invariant rings of finite an application to unimodular lattices. The Chinese remainder

groups. We introduce Type Il codes overZ,;, which are closely . . .
related to even unimodular lattices, as a remarkable class of theorem is a useful tool to investigate codes agi{11].

self-dual codes and a generalization of binary Type Il codes. A In this paper, we study self-dual codes o¥gf.. In Section
construction of even unimodular lattices is given using Type Il |l, we give definitions and some basic facts. We also introduce

codes. Several examples of Type Il codes are given, in particular Type 1l codes overZy; as a remarkable class of self-dual
the first extremal Type Il code over Zg of length 24 is constructed, codes then we show such codes are closely related to even

which gives a new construction of the Leech lattice. The complete " ". dular latti in Section Ill. Thi lati hi id
and symmetrized weight enumerators in genug of codes oveZ,, unimodutar fattices in section Hi. This refationship provides a

are introduced, and the MacWilliams identities for these weight number of properties of Type Il codes. In Section IV, several
enumerators are given. We investigate the groups which fix these examples of extremal self-dual codes are constructed giving

weight enumerators of Type Il codes overZ,. and we give the construction methods. For example, the first extremal Type
Molien series of the invariant rings of the groups for small cases. Il code overZg of length 24 is constructed, which gives a
We show that modular forms are constructed from complete and ; ) . .
symmetrized weight enumerators of Type Il codes. Shadow codes new construction of the Le.ech latt'_ce' Section V 'mr.OduceS
over Z,. are also introduced. the complete and symmetrized weight enumerators in genus
g of codes overZ,,. The MacWilliams identities for those
weight enumerators are provided. We also investigate the
groups which fix weight enumerators of Type Il codes over
Z,;.. Section VI investigates shadow codes of Type | codes
. INTRODUCTION overZy;. In Section VII, modular forms are constructed from
ECENTLY there has been interest in self-dual codekeight enumerators of Type Il codes. In Section VIII, we give
over finite rings, especially, the rind, of integers the Molien series for the invariant rings corresponding to the
modulo 4. The best known nonlinear binary codes such &mplete and symmetrized weight enumerators in ggnos
the Nordstrom—Robinson, Kerdock, Preparata, Goethals, ahpe Il codes ove#Zy, for small k& and g.
Delsarte—Goethals codes contain more codewords than any
known linear codes with the same minimum distance. A simple II. DEFINITIONS AND BASIC FACTS

relationship between these nonlinear binary codes and selfip this section, we first give the definitions used throughout
dual codes oveZ, was discovered by Hammons, Kumarihis paper. Then we introduce Type Il codes. Some basic
Calderbank, Sloane, and $0[14]. Moreover, similarly to properties of the Euclidean weight are also given.

binary self-dual codes, it was shown that self-dual codes overa |inear code ¢ of length n over Z,, is an additive

Z, are closely related to unimodular lattices via Constructicghbgroup ofzz,. A nonlinear code C' of lengthn is simply

A4 [2], in particular, any extremal Type Il code of lengthy sybset ofz, . In this paper, we consider only linear codes.
24 gives an alternative construction of the Leech lattice. Th&, element ofC is called a codeword of. A generator
notion of Type Il codes oveZ, was introduced in [3]. More matrix of C is a matrix whose rows generate The Hamming
recently as simple generalizations, cyclic self-dual codes OMGBightwt ; (z) of a vectorz in Z2, is the number of nonzero
Zy-, especially the lifted Hamming and Golay codes, haV(?omponents. Thé&uclidean weightwt z(x) of a vectorz =

Index Terms—Codes overZ,,, even unimodular lattices, in-
variant rings, Type |l codes.

been investigated in [4] and Type Il codes o¥er. have been (., 4, ... 2.) is
. . . . . . 7 7 7
studied in [9]. It is natural to consider the ri@g for cyclic N
: 2 2
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wtg(z —y), wir(z —y), andwtg(x — y), respectively. The where4; ; are binary matrices foi > 1. A code of this form

minimum Hamming, Lee, and Euclidean weightsy,dy, is said to be ofank {q:*, g%, q3*s,---, g%} and it has
anddg, of C are the smallest Hamming, Lee, and Euclidean -
weights among all nonzero codewords®@f respectively. H (3/qj)kj
We define the inner product ef andy in 23, by i
(z,9) = x191 + - - - + Tpyn(mod 2k) codewords.
We now give basic properties of Euclidean weights over
wherez = (x1,---,2,) andy = (y1,- -, ¥, ). Thedual code Z2x.

n , ,
C™ of C'is defined as Lemma 2.1:Let x be a vector inZ%, . Then

Ct={zec2y|(z,y)=0, forally € C}. wig(z) = (z,z) (mod 4k).
C is self-orthogonalf ¢ C C+ andC is self-dualif C = C+. Proof: Follows from the definition of the Euclidean
We define aType |l code overZ,;, as a self-dual code with weight. U

Euclidean weights divisible byk. For & = 1, this is the Lemma 2.2:Let M be a generator matrix of a codg
stgn_dard d(_ef!rytlon'of b!nary Type Il codes. For= 2, the . Suppose that the rows @ are vectors irZ%;, with Euclidean
original definition given in [3] requires that the code Conta'n\ﬁleight a multiple of4% with any two rows orthogonal. Thef

Fhe all-one vector as well howeV(_er, recently it h"’_ls been Sho‘f\éna self-orthogonal code with all Euclidean weights a multiple
in [16] that such a Type Il code in terms of [3] is equwalean Ak

to a Type Il code by our definition. Self-dual codes which are Proof: Let r; be theith row of M. By Lemma 2.1
not Type Il are said to bd&ype |

For some applications, there is often no need to distinguisivtx(z + y) = wte(z) + wte(y) +2(z,y) (mod4k). (2)
between+1 and —1 components of codewords, and we say
that two codes arequivalentif one can be obtained from the ~ This shows the lemma. -
other by permuting the coordinates and (if necessary) changingy the above lemma, it is sufficient to obtain the Euclidean
the signs of certain coordinates. Codes differing by only \geights of all the rows in a generator matrix of a cade
permutation of coordinates are callpdrmutation-equivalent \yhen we check ifC is Type Il.

The complete weight enumeratgewe for short) of a code  \we now introduce the notion of shadows for Type | codes

C over Zy, is defined as over Z,;. We first define a specific coset of a Type | code
C over Zy, in order to define the shadows. THé-weight
cwee (2o, 15+ Zo—1) subcodeC, of a Type | codeC is the set of codewords af
=" ape @@ g 2Ol O of Euclidean weights divisible byl
ceC

Lemma 2.3The subcod&’ is a linear subcode of index

wheren;(c) is the number of components of, respectively. N C. o
Permutation-equivalent codes have the identical cwe’s but Proof: By (2), the sum of two codewords iy is in
equivalent codes may have different cwe’s. The appropridte- EVery vector inC' has a Euclidean weight divisible by
weight enumerator for equivalent codes is themmetrized 2k- By (2) we see that; = C — Cy is of the formuz + G

weight enumerato(swe for short) defined as wherez is any codeword of” of Euclidean weight congruent
to 2k(mod 4k) and that translation by is a one to one map

Swer (o, 21, -+ -, L) = Z a;gB(C)x’fi(C) g <C>xzi(c) from C; onto Cs. 0
cCC Define theshadowof C asS = Cg- — C. The shadows for

binary Type | codes were introduced by Conway and Sloane
where ng(z), 71 (x), -, mj,_y(¢), my,(c) are the numbers of [6]. This notion was applied to Type | codes ov&y in [10].
0,£L,---, £k — 1,k components ot, respectively. Unlike the binary caseCs/Cy is not necessarily isomorphic

Let{ar, gz, -+, g} be the set of integers less thah that ¢, ye Klein4-group; it may be isomorphic to either the Klein
divide 2k, and arranged so that < ¢; for i < 5. Note that this 4-group or the cyclic group of ordet

implies ¢; = 1. Any code overZ,; is permutation-equivalent

to a code with generator matrix of the form
IIl. EVEN UNIMODULAR LATTICES AND TYPE Il CODES

aly, A Ars Arg o 0 A Let R be ann-dimensional Euclidean space with the inner
0 qoly, @Az @Azs -+ - @A product
0 0 g3l Q3A3,4 T T Q3A3,r+1
. . 0 . . . [,y =z + 22y2 + -+ TnYs
. for @ = (a1, 22, -, 2,) @and (y1,y2, -, Yn)-
0 0 0 0 agly, @A An n-dimensional lattice\ in R™ is a freeZ-module spanned

(1) bynlinearly independent vectots, - - - , v,,. An n by n matrix
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whose rows are the vectors,- -, v, is called a generator Proof: If a unimodular lattice has the property that every
matrix G of A. The fundamental volum&(A) of Ais|det G|. norm is a multiple of some positive integérthend is either
For a sublattice\’ C A, it holds thatV(A") = V(A)|A/A/|. 1 or 2 (cf. [19]). If C is self-dual thenA(C) is unimodular.
A lattice A is integral if A C A*. An integral lattice with Thuse¢ must be eitheRk or 4k. O
detA = 1 (or A = A*) is called unimodular If the norm
[z, x] is an even integer for alt € A, thenA is calledeven

Unimodular lattices which are not even are caltdtl The unimodular lattices, respect!vely. -
. . Moreover, Theorem 3.1 gives a restriction of the length of
minimum norm ofA is the smallest norm among all nonzerg

vectors ofA. a Type Il code.

Applying [7, Construction A] to Type Il codes ové&e;., we Corollary 3.3: If there exists a Type Il cod€’ of lengthn
have the following construction of even unimodular latticegver Z;, thenr is a multiple of eight.

Remark: Type | and Il codes correspond to odd and even

Let p be a map fron¥Z,, to Z sending0, 1,---,kt00,1,--- . k Proof: An even unimodular lattice of dimensiencan be
andk+1,---,2k—1to1—k,---,—1, respectively. constructed fron”' by Theorem 3.1. Even unimodular lattices
Theorem 3.1:1f C'is a self-dual code of length over Zaz, exist if and only |f the dwn_ensmn is a multiple of eight. Thus
. n must be a multiple of eight. O
then the lattice
1 Now let us consider the converse assertion of Corollary 3.3.
AC) = —={p(C) +2kL"} . .
V2k Proposition 3.4: There exists a Type Il cod€ of lengthn
is ann-dimensional unimodular lattice, where over Zy if and only if nis a multlple of eight.
Proof: Consider the matrix
p(C) = {(p(cr), -+, plen))l(cr, -+ cn) € O
The minimum norm ismin{2k,dg/2k} where dg is the (14, My),
minimum Euclidean weight of”. Moreover, if C is Type I
then the latticeA(C) is an even unimodular lattice. wherel, is the identity matrix of orde# and

Proof: If a1,ax € A(C) thena; = (¢; + 2kz)/V2k

wherec; € p(C) andz; € Z" for ¢ = 1 and 2. SinceC is a b ¢ d

self-dual, the inner product of; anda; is b —a —d ¢
M, =

1 c d —a b

(a1, a2] = {1, 2] d —c b —a

+ 2]6[21, CQ] + 2]6[61, ZQ] + 4]62[21, 22]} e’z

thenM,-tM, = (a®+b*+c2+d?)I, overZ where! A denotes
the transpose matrix of a matrix. From Lagrange’s theorem
on sums of squares, there are elementsc, d of Z such that
1+ a4+ b2+ %+ d? = 4k for any k with £ > 0. The integers

thus A(C) is integral. In addition, ifC is Type Il then the
Euclidean weights are divisible by. Then we have

1

2
[or. o] = 2% [er, ex] + dkler, 2] + 4b7[er, ]} € 22 a,b, c,d are necessarily less than or equaioso there exists
so that the lattice is even. a,b,c,d of Zy;, such thatl + a% + 6% + ¢ + d? = 4k for
Consider the Iattica/ﬁA(C), then k> 0. Therefore, these elemenish, ¢, d of Z; give that the
matrix (14, M,) generates a Type Il code of lengifoverZ;,
2k7™ C \/ﬂA(O) czm. for any positivek. Note that Calderbank and Sloane [4] gave
. the lifted Hamming codes which are Type Il codes of lergth
Since V(2k7™) = (2k)" and [v2kA(C)/2kZ"| = (2K)"2, tor Zym . O
we haveV (v2kA(C)) = (2k)™2. ThenV(A(C)) = 1 and o
A(C) is unimodular. The above Type Il codes of length give different con-
It is easy to see that structions for the Gosset latticés which is the unique
eight-dimensional even unimodular lattice.
[ai,a5] > [ci/V/2k, c; /V/2k] We now investigate the minimum Euclidean weight of Type

- . Il codes overZsy. The minimum normu of ann-dimensional
wherea; = (¢; + 2kz)/V2k. Thus the minimum norm is even unimodular lattice is bounderryby < 2|n/24| + 2
min{2k, dp/2k}. N and even unimodular lattices with = 2|n/24] + 2 are

Theorem 3.1 provides much information on Type Il codezalled extremal(cf. [7]). The minimum norm of the lattices
over Z»,. For example, the following corollary characterizesonstructed from Type |l code€’ gives directly an upper
divisible self-dual codes ove#,;, in terms of their Euclidean bound on the minimum Euclidean weight 6t

weights. Corollary 3.5: Letdg be the minimum Euclidean weight of

Corollary 3.2: Suppose thaiC is a self-dual code over a Type Il code of lengtlgn overZy. If |n/3] < k— 2, then
753, which has the property that every Euclidean weight is a
multiple of a positive integer. Then the largest positive integer <™
¢ is either2k or 4k. e < 4]%({ J + 1)' 3)
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Proof: Suppose that there exists a Type Il cadewith by appendingdl to the last coordinate of the generator vectors.
minimum Euclidean weightly = 4k(|n/3] + 2). The mini- The code&2* is Type Il andGZ* mod2 = {c mod 2|c € G3*}
mum normy: of the even unimodular lattick(C) constructed is the binary Golay code=2* is constructed from binary and
from C is min{2k,2|n/3| + 4}. From the assumptiony; = ternary cyclic codes.
2|n/3| + 4, which is a contradiction. O The swe of the above Type Il codg2? is

Remark: Whenk = 1 and 2, the above bound (3) holds swees(a, b, ¢, d)
without the assumptionn /3] < k — 2 (cf. [3], [18]). For o v

_ 24 24 2 16 46
kE = 1 and2, (3) is a bound for binary doubly-even self- = d™" +48¢7 +36432b°cd

dual codes and Type Il codes ov&;. Thus the following + 97152032 d® + 36432b* B d*?
conjecture is natural. + 510048b°c'°d® + 34974726512 d°

Conjecture 3.6:The minimum Euclidean weightls is + 1603008b" ®d” 4 36432b%c'C + 4048b7d*°
bounded bydy < 4k(|n/3] + 1) for all k > 1. + 68006400° 2 d® 4 8962272b*0 3 d°

When [n/3] < k — 2, we say that Type Il codes ovén, 161824612412 1 12364861212 1 510048063 B3

with dg = 4k(|n/3| + 1) areextremalfor k£ > 3.

15 49 16 8 r0718 46
Recently Rains and Sloane [21] have proved that the min- + 24288007°d” + 36432b7c” + 198352677 d

imum norm of . of an n-dimensional unimodular lattice is + 24288b?1d° + 48b** + 13248abcttdt
bounded by. < 2[n/24] + 2 unlessn = 23 wheny < 3. + 971520ab° 3 d° + 2914560ab*ct d®

Corollary 3.7: Let dg be the minimum Euclidean weight + 582912ab°c’d™ + 4080384abc!®d?
of a Type | self-dual code of length overZs;. If 2|n/24| < + 36140544ab” 11 d® + 14572800ab5 7 d°
2k — 3, then

+ 24482304ab*0 M d? + 39055104ab e’ d°
+ 8743680ab ¢’ d? + 145728a%bctd”

n
iy < 4’“(L2—4J +1). n#2 4 + 2185920262c10d"0 + 48576a2b° 53
6k, n = 23. + 947232002 b* M d* + 247737604 6° H0d”
+ 3934656a°b8 L d*0 + 8743680a%b ¢t *d
When2[n/24] < 2k — 3, Type | codes oveZ,; meeting + 1238688004630 d* + 450299520265 d”

the above bound (4) with equality are callegtremal 1244823040261 100 1+ 57076800620 25 4

Remark: It is natural to define the Euclidean weights of + 4080384420158 d + 4048432 d1? + 242884321
the 8|ementﬂ), :|:1,2:|:2§:|:3, sy :t(k' — 1),:|:k‘ of ng+1 as + 2185920a3b2613d6 + 2963136a3b309d9
0,1,4,9,---,(k—1)%, k=, respectively. IfC is a self-dual code oo 34 5 12 3.5 13 13
overZs+1 then the lattice\(C) in Theorem 3 is a unimodular + 218592a7b7c*d " + 34974720470 ¢ 'd
lattice. However, even i€’ is a self-dual code with all vectors + 97637760067 d® 4 110753284307 > d°
having Euclidean weight a multiple ch_+2, then_A(C) is not + 5100480a3b3c!3 + 1839411204307 23
always even. For example, the I_Euclldean weight of a vector 1 6339168067610 d° + 6300640a7b12¢?
(1123) overZ; is 10 but the norm isl5. Moreover, the sum of 313 53 | = 3,16 5
two even vectors iZ,;1 iS not necessarily an even vector; + 349747200707 c?d” 4 510048a°b"¢
for example, the sum dfi 12) and itself inZ3 is (221) which + 36432a*ct?d® + 36432a*bc3dM!
is not even. Thus in this paper we consider Type |l codes over + 14427072a*B3 12 d° + 14281344a*b* S d8

Z;. for only even numbers:. + 7286400 b7 c*d + 570768000152 d?
+ 187406208a*b" c3d® + 15665760a b3 d®
+ 123868800a* b0 B d? + 42989760a bt dP

IV. EXTERNAL SELF-DUAL CODES + 94723200 b1t d? + 58291247bettd7
+ 4371840 b2 7 d*0 + 429897600 bt d*
The most remarkable length for extremal Type Il codes + 3905510467 d + 187406208a°b5¢7 d

is 24, because of the connection with the Leech lattice.

= 51.9 3 47 4 57111 7
Several inequivalent extremal Type Il codes o&r have +11075328a70"c"d" + 36140544a”b" " c'd

. 5712 3 44 4 5115 3
been constructed. The first extremal Type Il codes dkgr + 144270726°6™"¢"d” 4 97152000 c°d
are constructed here fdr = 3 and 4. + 198352a°c™® + 3934656a°b 0 d®

Lifted Golay codes oveZ,- are given in [4]. We consider + 1603008aH3c8d° + 63391680a°H° 043

a codeG2* of length24 over Zg constructed from the cyclic

= 676 6 ;6 6.7 2 19
code with generator polynomial +50276160a70c?d” + 728640070 c"d

+ 8962272a°0%¢10 4 97637760a°b° C d®
44z 4 2% 208 4+ 5T+ 328 + P+ 42 + 32+ 5 + 3934656a°b'°c2d8 + 3497472450128
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+ 2185920a°0'3 2 d? + 36432450162 generates the Leech lattice, the mathif, s must generate an
4 2498807 Pd® + 110753284732 d° extremal Type Il code of rankl®, 2!*, 411} It seems that this

4 313315207025 d® + 4502995207 10 d? code is the first extremal Type Il code of lendth over Zy.

+ 3701491247 b7 > d® + 2550240 b3 cd®

+ 247737604 b0 d? + 58291247 bt ed®

+ 1457284 bt ed? + 759a%d*6 + 255024a°bc®d”
+ 15665760a5b*c®d* + 3133152450 c*d”

+ 14572800a°b" ¢®d 4 14281344033 *d*

+ 24288a%0°%d" + 2914560030t ctd

+ 36432a5b12d* + 242880a%¢°

+ 7286406V ¢ d° + 11075328a°b° ¢ d?

+ 1603008a°b°2d® + 16030084037
+2963136670°2d® + 97152402 3

+ 1068672a*°63c8d® + 39346564055 d?

+ 437184a*°07 2 d® + 2185924 °b10 2 d?

+ 7286400 b’ d* + 5829124070 d

+ 36432a'08cd* + 13248at b ed + 257602 d*?
+61824a'?c!? + 218592ar 207 d® + 3643242884
+ 4048a*269d® 4 485764302 d? + 4048a*°°
+ 759a1%4% 1+ o%*.

40000000000000000000000
04000000000000000000000
00400000000000000000000
00040000000000000000000
00004000000000000000000
00000400000000000000000
22222220000000000000000
00000004000000000000000
00000000400000000000000
00000000040000000000000
22200002222000000000000
00000000000400000000000
20022002200220000000000
02020202020202000000000
00220022002200200000000
00000000000000040000000
02020022200000022000000
00222002020000020200000
20020202002000020020000
22220002000200020002000
00000002200220022002200
00000002020202020202020
11111111111111111111111

Thus G2* is an extremal Type Il code of leng4 over Zs.
Applying Theorem 3.1 t@+2*, the Leech lattice is constructed.

Recently, some newb5-designs have been constructed
from the lifted Golay code overZ, (cf. [15]). In addition,
any extremal Type Il code of lengtR4 with the same
symmetrized weight enumerator as the lifted Golay co
contains5-designs (cf. [1]).G2* (mod) 2 is the binary Golay  This gives the following question.

24 i
code and &g* (mod)3 is an extremal temary self-dual Question: Is there an extremal Type Il code of leng2h
code. Thus the four sets of the codewords correspond|(r51\9erZ for o > 57
to 759a%6d® 4048a'°c?, 2576a2d?, and 61824at?ct? form 2k = o
5-designs. However, we have verified by computer that
sets of the codewords corresponding 268592a126°c4¢3, B. Methods to Construct Self-Dual Codes
36432a12b5¢*, 4048a'20%d?, and 48576a'*b°c*d* do not  Here we present methods to construct self-dual codes over
form 5-designs. Zos.

Now we investigate Type Il codes of lengtd over Zg.
The lifted Golay codes of length overZ,~ were constructed
from the binary Golay code by the Hensel lifting (cf. [4]). Th
Golay codes are Type Il codes, however, the Golay code o
Zs is not extremal (cf. [9]). In addition, it was shown in [9] ;
that there is no extremal double circulant Type Il code d&er that |T'] or & IS even. Lett = (t1,- -, tun) t.)e a(1,0)-vector
of length24. Thus we consider Type Il codes of another typé’yher.eti = 1if i € I' and#; = 0 otherwise. LetAr be a
Fork > 2, a generator matrix of an extremal Type Il code Overpatrlx which has theith row
Z gives a generator matrix of the Leech lattice. Thus it is a; + kt, if ||a+i+kt]| = —1 (mod 4k)
natural to investigate generator matrices of the Leech lattice. A% = { a; + kt+kj,  otherwise
generator matrix of the Leech lattice is given in [7, Fig. 4.12].

The generator matrix gives 28 by 24 matrix My, s OVerZs. where|z|| denotes the Euclidean weight efandj is the all-
It is easy to see that the matri{,, s generates a Type Il code gne’s vector. Then the matri@ = (I, Ar) generates a Type

WO OO NN =N NN R DD R N R R

Proposition 4.1: There exist extremal Type Il codes of
é%ngth 24 over Zo;, for k < 4.

Proposition 4.2: Let (I, A) be a generator matrix of a Type
él code C with rank {1*"} over Zy; of length8n containing
&Q? all-one vector wherea; is theith row of A. LetI" be a
set consisting ofr columns ofA where0 < « < 4n. Assume

of length24. In addition, since the following matrix: Il code Cr.
Proof: We have|la; + kt|| = ||a:|| (inod 2k). Moreover,
1 Moas if ||la; + k]| = 2k — 1 (mod4k), then |ja; + kt + kj|| =
/8 —1 (mod 4k). Thus a row ofG is orthogonal to itself and the

g8 0 - 0 Euclidean weights of all the rows @& are divisible by4k. In
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addition, thesth row o of Ar can be written as V. WEIGHT ENUMERATORS, MACWILLIAMS
R lla; -+ kt|| + 1 IDENTITIES, AND INVARIANTS
@ = ai + R+ R 2k ) In this section, we introduce several types of weight enu-

SinceC tains the all o i = 1 42k merators of codes ovef,;. For these weight enumerators,
h ince hcon ains the all-one vectoa, - j = ~1(mod 2k). 0 oqiaplish the MacWilliams identities and study invariants.

IS we have || K 41 From now onR denotes the rin@sy.

/ / . 2 a; + +
{a;, a5) = < <“i +ht+ M( ok ))v A. Weight Enumerators and MacWilliams Identities

ey + Rt +1 First let us fix the notations. We denote the primitiveh
B R Y 2%k root ¢27%/™ of unity by 7,,. A[B] := *ABA for matricesA
— (a5, ;) + (kag, t) + (kay, t) and B, where! A denotes the transpose df
- (R (2 3

<<|Iai + kt|| + 1) <||aj + kt|| + 1>> Definition 1: (Complete Weight Enumerators in Genys
+ ;

2k 2k For a codeC over It, we define the complete weight enumer-
ator in genusg by

={a;, a;).
Therefore, the cod€r is self-dual. Coyg(za With a € RY) = Z H Zge(cres)
The Euclidean weight of a row off is divisible by 4k G COaCRT
and C is self-dual. Thus it follows from Lemma 2.2 that theVherena(cy, - -+, ¢g) denotes the number ofsatisfyinga =
Euclidean weight of every codeword of the code is divisiblg i, cgi)-
by 4#. - Remark:

Starting with one generator matrix, one can construct a1) For the casg = 1, these weight enumerators are the
number of Type Il codes which might be inequivalent codes. same as ordinary complete weight enumerators defined

Corollary 4.3: Let the assumptions and notations be the  in Section II. _
same as ones of Proposition 4.2. B¢ be a matrix which 2) For the casek = 1, these weight enumerators were

has thesth row introduced in [12] and [23].
Y — {ai + kt, if [|a; + kt|| = 2k — 1 (mod 4k) We define a relation~ in R? by
a; + kt +kj, otherwise. Gmb e a=b of a——b

Then the matrixz’ = (I, Br) generates a Type | cod&l.  \hereq, b € R?. Then the relation- becomes an equivalence

Remark: We gave methods to construct Types | and fielation in B¢ and we denote the natural projection using the
codes from certain Type Il codes. Similarly, one can easifPnventionsz. Note thatwtp(a) = wtgp(—a) andwtz(a) =
get similar methods to construct Types | and Il codes frotfitr(—a)-

Type | codes of lengtsn. Definition 2 (Symmetrized Weight Enumerators in Ge-

As an example, we construct an extremal Type | code ovayS 9): For a codeC over i, we define the symmetrized
7, of length24. An extremal Type Il codeD», overZ, with Weight enumerator in genus by

generator matrix of the form Sc. y(zg With @ € R9) = Z H ZE;<<:1,~~,cg)
2 3 ... 3 c1,5¢9CC geRe
1 whereng(ci,- - -, ¢,) denotes the number efsatisfyinga =
I : R FCTRET
1

Remark: For the casgy = 1, these weight enumerators are
where R is a 24 by 24 circulant matrix with first row the same as ordinary symmetrized weight enumerators defined
(21311133313) is given in [5]. By Corollary 4.3, Type | codesin Section Il.

are constructed fromDz4. WhenD' = {1}, it is easy to see

that its generator matrix is From now on, we often write complete and symmetrized

weight enumerators in genug by €c (%), Gc 4(za), re-
03 - 3 spectively, for simplicity.
G = 1 We have theMacWilliams identityfor the complete weight
1 : R+2J enumerators. Here we consider thatraby n matrix M acts
1 on the polynomial ringC[x1, x2, - - -, 2,,] naturally, that is,

and the minimum Euclidean weight of this codeli, thus M- f(zy, 22, 2)

this is an extremal Type | code ovér, of length 24. By

Theorem 3.1, this code yields the 24-dimensional unique odd —f Z ayiz. - Z -
unimodular lattice with minimum norrd which is called the T e
odd Leech lattice. Other extremal Type | codes of leregth
are constructed in [13]. where f € Clz1,x2,- -, z,] and A = (a;;).

1<jsn 1<isn
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Theorem 5.1 (MacWilliams Identity)For a code” over R,
we have

Q:CJ‘,(](ZG«) |C|gT CC,9(70«)

where T = (15" bcro.

Similarly, we have theMlacWilliams identityfor the sym-
metrized weight enumerators.

Corollary 5.2 (MacWilliams Identity):For a codeC, we
have

ch_7g(za) |C|9T Sc 4(za)
where
T = (t(av Z))Ejeﬁ
and
t(a, E) = Z 77;2 4 .

dCRY with d=b

B. Invariant Rings

In this subsection, we study the invariance properties

complete and symmetrized weight enumerators.
We define a subgrous® ; of GL((2k)?,C) as

GS . =(Ty, Ds,7s|S runs over all
integral symmetric matricés
where
Us g Sla]
T, = —) T, Ds = diag (n;;, with a € R9).
g <m) S g(n4k )

Theorem 5.3:For any Type Il code” over R, the complete
weight enumerator in genusis invariant under the action o

the groupG?s ;..

Proof: We have only to check three types of generators, Iy = <m

1,,Dg, andng. The invariance property df;, 77 comes from
Corollary 3.3 and Theorem 5.1. We shall show that

Dgs - Q:C,g(za) = Q:C,g(za)'

We have

Ds - Cc y(2,) = Z an,faz

c1,-,c,€C aCR

c1,-,c,€C aCR

Na (Cl 7"'7cg)

In order to prove the theorem, we have to show

Z Sla] - na(er, - -

aER

ZSCL] Tig Cla € )
Z S cllv ) 7cgi)]

1<i<n

,¢g) = 0 (mod 4k).
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= Z Z skk(cki)2+2 Z SImCliCmi

1<i<n  1<k<Lg 1<i<m<g

2
= E Skk E (eri)™ +2 E Stm E Cli Crni -
1<k<g 1<i<n 1<i<m<g 1<i<n

For any element;, we have

> (eri)? = 0 (mod 4k)

1<i<n

WtE(Ck) =

and

Z CliCli = 0 (mod 2]€)

1<i<n

follows from the calculationig(c;, ¢x) = 0(mod 4k). There-
fore, it turns out that

Z Sla] - nalcr, -+, cg) = 0 (mod 4k).
aCR
This completes the proof of the theorem. O

Remark:
1) Gy is (up to £1) the homomorphic image of the
of  modular groud’, under the theta representation of index
k (cf. [24]).

2) Theorem 5.3 says that the ring generated by complete
weight enumerators for Type Il codes is contained in
the invariant ring of the group?i x- FOrk =1, the two
rings coincide (cf. Theorem 3.6 in [23]).

We now define a subgroufi} , of GL(297'(k?+1),C) as

Hik =(T,,Dg,ns| S runs over all
integral symmetric matricés

fwhere

118 ) T andDs = diag (774k with @ € ¢(RY)).

Similarly, to complete weight enumerators, we have the
following MacWilliams identity for symmetrized weight enu-
merators in genug.

Corollary 5.4: For any Type Il code over R, the sym-
metrized weight enumerator in gengss invariant under the
action of the groupHy ,.

In concluding this subsection, we would like to emphasize
that the groupsG, s, as well the groupsH, s, G3,, and
Hgk are all finite groups. This is explained as follows. Here
we assume that the reader is familiar with some of the basic
concepts of theta functions, such as given in Runge [24].

The groupH,, ;.= (T,, Ds|S runs over all integral symmet-
ric matrices acts linearly on the space spanned by the theta
constantsfék) of index &k, where

f(k) Z eXpZWL(kT[x—i— 2]{})

rcl9

Note that herek € N, a € (Za)7.
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TABLE | VI. SHADOWS AND WEIGHT ENUMERATORS
ORDERS OF THEGROUPS G H GS ., anD HS | . . .
ok ok ok 9.k We first prove that the complete (respectively, symmetrized)
k 1 2 3 4 5 6 7 8

weight enumerator of the shadow of a Type | cadeover

Iglk|| gg ggi ii‘g; gg;; 151756200 gg}g i‘éf;g ;i;;g Zs is uniguely determined from the complete (respectively,
1,k : : : 4 i i
192 1536 4608 12288 23040 368645 64512 9s304 ~ Symmetrized) weight enumerator 6f

IGT . A g o 020 M
|H1,k| 192 768 2304 6144 11520 18432 32256 49152 Lemma 6.1:1f C is a Type | code oveZy; then
cwec, (2o, &1, -+ Tok—1)
It is known that the groupH, ,/(£1) is a homomorphic 1
. ) : = —(sw JTLs s Toke
image of the Siegel modular grodf), = Sp(2¢, Z) under the 2( & (20, 71 T2-1)
theta representation of index + swee(nfezo, Ny, - Y ganet))
Ptheta,k * Fg — Aut (TH(k()2)> swe-, (‘/E;vxlv T .’L'k)
in the notation of [24]. The kernel of this representation = 5 (sweo(zo, 21, -+, )
is completely described in Runge [24, Theorem 2.4]. In +SW%(772;$0 Uizxo Uffzxk))-

particular, this kernel contains the subgrolip(4k). Since
I, /T, (4k) = Sp(2g,Z4) is a finite group, the finiteness ofWherenyy denotes the pr|m|t|v@kth root of unity.

the groupH, ;, follows immediately. Proof: Letc = (c1,¢2, -+, ¢,) be a codeword i€’ then
Similarly, the group&, » = (T, Ds|S as aboviacts linear- noo
ly on the space spanned by the theta functigfé(r, =) of [ [y = H )’ ) H @)
index &k, where i=1
(k) i E” * L i%n(e) n7 c)
F3(r, 2) lg;} exp 27rL(k'r |:.’L’ + 2/{} <a: + 2k,2kz>). = (M) H
Again, G, ./(£1) is a homomorphic image df, = Sp(2g,Z) Since C' is self-dual,c has Euclidean weight= 0 (mod 2k).
under the theta representation Sincewtg(c) = XLy i%ny(c) (mod 4k)
penotag 1 Iy — Aut (TH57<(<2’;>) . _Hg;;“ ©if wip(c) = 2k (mod 4k)
i2  ni(e) _ =1
in the notation of [24]. From the relation H(Mk%) = .
=1 Ha:? . if wtg(e) = 0(mod 4k).

<(1) f) ¥ (7, 2) = exp27rL<i[k]> R (1, 2)
This proves the lemma. The swe is computed from the cwe.

it is again proved thal(4k) is in the kernel of the theta O
representation, see, e.g., Runge [24] or Kac [17, TheoremTheorem 6.2:Let C' be a Type | code oveZ,; and letS
13.5, p. 169]. Since the group,/T",(4k) is finite and since be its shadow. Then the cwe and swefis related to the
|Gyr] < 2-|I,/T,(4K)|, we have the finiteness of thecwe and swe of” by the relation

group Gy i The finiteness of the groups} , and H;, are

cwe ... 1) =CW A - o
immediately obtained as (@0, o, Ta-) ec(Alwo,z1, -+, w2k-1))
N SWeS(.To,xl,---,J}k) ISW%(B(xovxlv"'vxk))
|Gorl <8 [Ggil , o
and : where A = (a;,) is the 2k by 2k matrix with
|Hy il < 8- [Hyl. = (1/V2k), "
Although we will not discuss the details here, it is possibl@nd B = (b;;) is the (/€ + 1) by (k + 1) matrix with
to determine the orders and the structures of the groups ‘ Za
) g

Ggr, Hgr,o G5, and H}, more explicitly, by using the
known explicit determinations of the kernels of the theta

representations wheres = ¢ if ¢/ =4 or¢ = —i.
N Proof: We proceed as in [6, p. 1323] by computing first
Pilietak : g — Aut (TH(722)) by the MacWilliams identity
given in Runge [24]. CWec L (2o, o1, Tan—1)
We give in Table | the orders of the grougs, », H, &, _ icw M
GS ., andHS, for g = 1 andk < 8. It can be shown, for O] Cc(M(wo, a1,y war-1))

exam le, that . o
p whereM = (m;;) is the2k by 2k matrix with m;; = 75, , the

|GY g | = 1922771, cwe of C+, then the cwe of itdk-weight subcode, the cwe of
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the dual of the latter, and, finally, the cwe of the shadow by Proposition 6.5: Let C be a Type | code oveR and letS
the difference of the cwe of;- and the cwe ofC. The swe be its shadow then

follows similarly. a Isc(Xa) =(T @ DIc,c(Xpa)
Definition 3 (Complete Joint Weight Enumerators)he Je,5(Xa) =1 @ T)Jc,c(Xpia))
complete joint weight enumerator for codé$ and K of —(ToT X
length » over R is defined as Js5(Xa) =(T'@ T (Xow)
Proof: We computedc c,, Jc,.c, and 3¢, ¢, by the
- . na(c,k 02 0,7 X 0,0
Jo, ik (Xq witha € R x R) = Z H Xgaloh) above theorem, apply the MacWilliams identity, and then
(e,k)COXK aCRXR compute the desired weight enumerators from these weight
whereng(c, k) = |{jl(¢;.k;) = a}|, ¢ = (c1.---,¢,), and EnUMerators, =
k = (ki,---,k,). Similarly to complete weight enumerators, |emma 6.1, Theorem 6.2, as well as Propositions 6.4

we often simply denote the weight enumeratorsibyx (Xa). and 6.5 determine complete, symmetrized, and joint weight
In a similar argument to Theorem 5.1, we have thenumerators foCy and S from ones ofC. For the code to
MacWilliams identity for complete joint weight enumeratorsexist all of these weight enumerators must have nonnegative

Theorem 6.3 (MacWilliams Identity)Let A denote either integral coefficients. Our results seem to be useful for proving

A or AL Then the nonexistence of a certain Type | code oZegy. In fact, for
1 the casek = 1, the nonexistence of some Type | codes with
Je g(Xa) = P |K| high minimum weight was proved in [6] using their shadows.
’ de oL KK+
(TPt @ TR ) I i (Xa) VIl. CONSTRUCTION OF SIEGEL MODULAR FORMS
where We first recall the notations of theta functions (for more
- (né’,’;b)) e and 55 e = {07 i %:AL detail, see, e.g., [24])
. a, iA+ . _ 1 3
L, if A=A+ 9|:a:|(T)::Z eXp27r\/—_1<—T[$+g}+<x+g,/—>>,
e 8 2 2 272
Proof: Similar to that of Theorem 5.1. O x€Z9
9
We give relationships between a Type | code and its shadow o B eFsy, TEH,
using the weight enumerators. where?, denotes the Siegel upper half-space
Given the complete joint weight enumerator 9§ « we . .
can findJc.c,, Jc,.c, and Jc, o, - H,={Z=X+1iY € GL(9.C)|Z ='Z,Y > 0}.
Proposition 6.4: Let C be a Type | code oveR and letCy We define for any positive integér the following theta
be the4k-weight subcode of”. Then functions:
1 . alk
ey (Xa) = 5Fc.c(Xa) + Je.c (Ko@) F(r) = 9[ é } (2kT).
1
Jey,c(Xa) = 5(3C,C(Xa) +Jc,c(Xy@)) It is well known that the modular group, = Sp(2g,7) is
1 generated by the elemenfs= (9 /) andDs = ([ 7), where
Jeo,co(Xa) = ;(Fcc(Xa) +Ico(Xo@) S runs over the symmetrig by ¢ matrices. They act on the
+3c.c(X ) + 3e.c( X)) theta functions as follows:
where Ds(fiN(r) = eXPQWi< o ]>f(k)( )
#(@) = iz (a,) J(f&) () =S @),
P(a) = i (a, ) /det (—

bC(sz)q
and

JERTY Moreover, the theta functions for a lattideare defined b
b(a) = " (a,0) Y

. [alc7 5]
for a = (a,b) € R x R. OL,4(7) = Z H

Proof: Notice that the substitutionY,,) fixes each e €L 1ShI S
monomial representing codewords with Euclidean weiglthere ¢;; = exp my/—17;;.
divisible by 4k and negates each monomial representing A Siegel modular form of weight for I', = Sp(2g,7) is

codewords whose Euclidean weight 2k (mod 4k), which g holomorphic functiory on the Siegel upper half-space such

gives the result. The remaining two cases are similar. OO  that for all (é g) € I',, we have

We can apply the MacWilliams identity to find all the joint F((A7 + BY(Cr + D)™ = det(Cr + D)kf(,r).
weight enumerators involving, Cy, Cg-, and S. In particular
we have the following We need more conditions for the cage= 1.
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Theorem 7.1:Let C be a Type Il code of length over R In the following, we give the Molien series in the form
and letA(C) be the even unimodular lattice constructed from
C by Theorem 3.1. Then $;(t) =the expansion

=the Hironaka decomposition
=the Hironaka decomposition with
factored numerators.

Cog(fP(r) = G g(J (1) = Oaey ofT)

and these functions give Siegel modular forms of weigf
for I',.
If the numerator is irreducible, we omit the third line for each
VIII. M OLIEN SERIES FORSMALL CASES case.

The weight enumerator of a self-dual code belongs to the|G1,1| = 96 and
ring of polynomials fixed by the group of substitutions. In this
section, we give the Molien series for the invariant rings obg, ,(t)=1+ 1512 10 20 ot 2 o7
the groups of smalk and g. =1/(1—t5(1 —*?)

First, let us recall the general invariant theory of finite
groups. LetG be a finite subgroup of7L(n,C). Then G |Gy2| = 384 and

acts on the polynomial rin@[z1,--,z,] (Clxx] for short)
naturally, i.e., D, , (1) =1 4 465 4 2620 4 3412 2414
+ 11810 4+ 713 + 11870 + 922 4 25¢%* 4 18¢%°
A -flzy, - ,zn)=f Z Az, -, Z Az L2728 1 03430 4 48s32 4 ...
tssn == — (1415 42610 4 2612 4 2614 4 216
where f € Clzi] and A = (A;;)1<ij<n. There exists a 418 4§20 4 422 4 426
et GCI T o ntely Gonerated 1@l - £l /01 - 2 -4

module. The invariant ring has thidironaka decomposition
|G173| = 2304 and

C['Tk]G = ®1§"l§89nzc[917 T 9n]7 g1 = 1.
B, (1) =1+ 1%+ 15¢1% 4 37416 4 78¢%°

+229¢7% 4+ 419#2% 4+ 721452 4. ..
= (1 + 12#'2 + 36t 4- 630 4 148¢%*
4 23378 + 303t32 + 36616 4 444*°
+ 460t + 427t*8 4 338°% 4 272t%°
+ 17459 + 965* 4+ 53¢%% 4 24¢™ 4 5¢76

The invariant ring is an graded ring and the dimension
formula is defined by

De(t) = Z dim Cla]§t¢
d>1

where C[z]§ is the dth homogeneous part d[z;]“. The
dimension formula for thédironaka decompositiomgiven in

the above form is + 59 /(1 = 3)(1 — t12)3(1 — £2*)?
14 pdes(oz) ... 4 pdes(ss) =(1-t+ t2)(1 +t+ t2)(1 —t2 4+ t4)
Pq(t) = (1= tAea @) (1 — o8y (1 — #* 4 13¢12 4 23416 4 27420

24 28 32 36 40
In general, the converse is not true. It is known that we have + 987" + 10867 4 9747 + 1617 + 186¢

the identity + 113 4 128*% 4 9752 4 4756 4 30t%°
o)=Y 1 + 19654 + 4¢5% +472) /(1 — %)
A £ det (1—tA) (1= #1231 — 242
This was shown by Molien and is callddolien series 1G3,| = 192 and
We recall the notations bt
R:=1 Doy (1) =14° + 10 4262 207 ..
g 8 24
8 a,b ., S[a] =1/(1 —-t")(1—1¢
Gon = <<\/_2_k> (089" o e ro , diag (51 with aER9)> /( X )
GS = (G i8) |GY 5] = 1536 and
g - _ _ 8 16 r 524 32, .
Hyp:= <<—778 ) (1@, 5)) 5w g (71! with aERQ)> o, (1) =148+ LU 4 25074 4867 +
V2k = (1 + 85+ 2616 4 2424 4 432 4 410y
Hik = (Hg,k:ns) S(1=-1%)3(1 -2

where (@, b) = Sacre ith d = bpie . =(L+tH(A+8197/(1 - 1%)°(1 - 12



1204

|G¢ 5| = 4608 and

Dgs (1) =1+ % + 37810 + 2206% 4 7217 -

= (1 + 35¢10 4 188¢%* + 45632 4 1099+*°
+ 1677t 4+ 1829t%° + 1793t%* + 1246¢72
+ 590150 + 241¢% 4 56¢7° + +10%) /(1 — %)
(1- th)(l _ t24)4

=(1+%)(1 — %+ 36t'° + 152¢2* + 304¢2
4 7950 + 88248 4- 947456 4 846¢5* + 400t™
+ 190t%0 4 51¢%8 + 5t9)/
(1=t -1 -2

|H172| = 384 and

Dpy,,(t) =14 265 + 412 + 4410 4 2420
+ 7t 102 4
=149/ -1 -t

|H173| = 1152 and

Dp, L, (8) =14+ 1% + 317 +4¢'% 4 5£%0 + 156

+ 14878 4 24¢3% 1. ..

=(1 =22 3t  2¢%° 4 624
+ 628 + 732 4+ 613 + 5110 4 6t
448 4 9p5? 4 tse)/
(1— t12)(1 _ t24)2

=1 —t+)Q+t+3)(1+¢*)
(A= -t 419
(11— # 4 opl2 4 416 _ 420
452 g8y 432 t36)/
(1= = D)1 — t24)?

|HP,| = 768 and
Dps (1) =1+ 26° 4 46*° + 7624 + 1067 + -
=(1+9)/(1 = %)*(1 — %)
|H? 3] = 2304 and
Ops (t) =1+8° 4410 + 1567 2487 4.
= (142t +9t** 4 6t 4 5¢*°
+ 78 1 2650) /(1 — £3) (1 — #16) (1 — +74)?

=(14+%)(1 — % + 316 4 6¢2* + 520 1 2¢%8)/
(1 =31 =0 (1 — 22

Remark: The Molien series®¢, . (t) and ¢, ,(t) were
determined by Runge [22] and Oura [20], respectively.
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Hamming [8,4, 4] code and the extended Gold#4,12, 8]
code. Now let us consider complete and symmetrized weight
enumerators of Type Il codes ové. In [3], the invariant
ring for HiQ was investigated under the condition that Type
Il codes contain all-one vector, that is, they investigated the
invariant ring for the groupK generated byHi2 and the
matrix

0 01
0 1 0
1 0 0

The groupX has the same order EEEQ. Thus the invariant
ring for HY, is

C[d)& d)év ¢24] 2] d)lﬁc[d)& d)év ¢24]

where ¢s, ¢%, P16, and ¢4 are the symmetrized weight enu-
merators of Type Il code®s, Qs, RM(1,4)+2RM(2,4) and

the lifted Golay codeF,4 over Z,. For the complete weight
enumerators, a Magma computation shows that the invariant
ring of G§72 has the homogenous system of parameters of
degreess, 8, 8, and24. This means that the invariant ring has
exactly the Molien series of the form

1+t8+2t16+2t24+t32+t40
(1= #)3(1 - &9)

Let W(n) be the ring generated by thgh complete weight
enumerators of Type Il codes of lengthWe have verified by
computer thadim W(8) = 4 anddim W(16) = 11, however,
we have checked onl§im W(24) > 23. Thus it is not known
if the invariant ring forGi2 is generated by the complete
weight enumerators of Type Il codes ovar.
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