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Abstract: In the first paper we determined the generators of the ring
of Eisenstein polynomials in genus 2, those of which are described in terms of
coding theory. In this second paper we go beyond coding theory and clarify
the ring of Eisenstein polynomials in arbitarary genus from invariant theory.

1. Introduction. There exist extensive, connected studies between
theory of modular forms and that of combinatorics, however, we miss the
corresponding theory of Eisenstein series from the combinatorial side. Our
approach of the series of papers will give a step to fill this gap. The main
theme of this second paper is to clarify the properties of the graded ring of
Eisenstein polynomials in connection with the invariant theory which is free
from coding theory.

To explain our approach, or to help for the reader to understand the
meaning of our work, we shall recall the theory of Eisenstein series from
our standpoint. Let g be a positive integer. We denote by Γg the integral
symplectic group Sp(g,Z) and by Γg,0 the subgroup of Γg consisting of the
elements of Γg with left bottom blocks equal to zero. Then Eisenstein series
could be defined as

ψ
Γg

k (τ) =
∑

det(cτ + d)−k

for even k > g + 1 in which the summation is extended over elements of
Γg composed of a, b, c, d modulo left multiplications of elements of Γg,0.
This gives a Siegel modular forms of weight k for Γg. Here we take up two
properties of this series. First the Eisenstein series could be written as the
weighted sum of the theta series of all classes of even unimodular lattices in
rank 2k ≡ 0 (mod 8). This is a consequence of Siegel’s Hauptsatz. Secondly
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the ring of Siegel modular forms of even weights for Γg is the normalization
of the ring of Eisenstein series in its field of fractions. This also comes from
the work of Siegel. At any rate Eisenstein series are singled out by their
importance in the theory of modular forms.

Throughout our investigations, we always have in mind the following
dictionary, which might be helpful for the reader. The notations will be
explained in the next section.

“infinite world”←→ “finite world”

Γg ←→ Hg

Siegel modular form←→ Hg-invariant polynomial

Eisenstein series←→ Eisenstein polynomial

lattice←→ code

2. Definition of Eisenstein polynomial and its first properties.
Let g be a positive integer. Here we assume that entries of each element of
GL(2g,C) are indexed by the elements of Fg

2. A subgroup Dg of GL(2g,C)
is generated by diag(i

taSa : a ∈ Fg
2) for all S = tS ∈ Matg×g(Z). We denote

by Hg, which was studied in [8], a finite subgroup of GL(2g,C) generated by
Dg and (

1 + i

2

)g (
(−1)a·b

)
a,b∈Fg

2
.

The group Hg contains the subgroups

Fg
2, GL(g,F2)

under appropriate embeddings. As entries of each element of Hg are indexed
by the ordered elements of Fg

2, such a matrix naturally acts on the polynomial
ring C[x] = C[xa : a ∈ Fg

2]. An Eisenstein polynomial of weight ℓ for Hg is,
by definition,

φ
Hg

ℓ (x) =
1

|Hg|
∑
σ∈Hg

(σx0)
ℓ.

From the definition we see that φ
Hg

ℓ (x) is an element of the invariant ring
C[x]Hg . Let Kg be a stabilizer of x0 in Hg which is generated by GL(g,F2)
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and Dg. The group Kg corresponds to Γg,0. It is easy to see that

φ
Hg

ℓ (x) =
|Kg|
|Hg|

∑
Kg\Hg∋σ

(σx0)
ℓ

and we put

kg = |Kg\Hg| = 22+g(2g + 1)(2g−1 + 1) · · · (21 + 1).

Here we only mention that this is nothing else but the number of the minimal
vectors of Barnes-Wall lattice in dimension 2g+1. We note

|Hg| = 2g
2+2g+2(4g − 1)(4g−1 − 1) · · · (41 − 1),

|Kg| = |Dg| · |GL(n,F2)|
= 4g2(g−1)g/2 · 2(g−1)g/2(2g − 1)(2g−1 − 1) · · · (21 − 1)

= 2g
2+g(2g − 1)(2g−1 − 1) · · · (21 − 1).

The explicit values of kg = |Hg|/|Kg| for g = 1, 2, 3, 4 are

24 =
96

4
, 240 =

4680

192
, 4320 =

371589120

86016
, 146880 =

48514675507200

330301440
.

We add one more finite group. Let Gg be a finite subgroup of GL(2g,C)
generated by Hg and the 8th root of unity. The index of Hg in Gg is 2.
Invariant theory of Gg works well in coding theory as we shall recall. The
weight enumerator W g

C(x) of a binary code C in genus g is defined by

W g
C(x) =

∑
v1,...,vg∈C

∏
a∈Fg

2

xna(v1,...,vg)
a

where na(v1, . . . , vg) denotes the number of i such that a = (vi1, . . . , vig). It
is then known that the ring generated over C by the weight enumerators
of Type II codes in genus g coincides with the invariant ring of Gg. This
theorem started with Gleason [1]. See [6]. Note that the invariant ring of
arbitrary finite group is integrally closed.

Till the end of this section we assume ℓ ≡ 0 (mod 8). Applying Theorem
6.3 in [5] to the doubly even code generated by all one vector, we have

2g

|Gg|
∑
σ∈Gg

(σx0)
ℓ =

∏
0≤i<ℓ/2−1

(2g + 2i)−1
∑
C

W g
C(x)

=
∏

0≤i<ℓ/2−1

(2g + 2i)−1
∑
[C]

ℓ!

|AutC|
W g

C .
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The summation over C means that C runs through all Type II codes of
length ℓ, while that over [C] through all classes of Type II codes of length

ℓ. Since the sum
1

|Gg|
∑

σ∈Gg
(σx0)

ℓ is φ
Hg

ℓ (x), we get Siegel’s Hauptsatz in

coding theory:∗

φ
Hg

ℓ (x) =
ℓ!

2g
∏

0≤i<ℓ/2−1(2
g + 2i)

∑
[C]

1

|AutC|
W g

C(x).

From this formula we see that φ
Hg

ℓ does not vanish for ℓ ≡ 0 (mod 8). Siegel’s
Φ-operator in number theory could be also considered in our context (cf. [8]).
Applying our “Φ-operator”

Φ(x(a1a2···ag)) =

{
x(a1a2...ag−1) ag = 0

0 ag = 1

to the formula, we get

Φ(φ
Hg

ℓ (x)) =
1

2
· 2

g−ℓ/2+1 + 1

2g + 1
φ
Hg−1

ℓ (x).

3. Ring of Eisenstein polynomial. In this section the graded ring of
Eisenstein polynomials is studied. We shall start with the following finiteness
theorem, which is a consequence of the fundamental theorem of symmetric
polynomials.

Theorem 1. (1) The ring C[φ
Hg

ℓ (x)] of Eisenstein polynomials is finitely
generated over C.

(2) The ring C[φ
Hg

ℓ (x) : ℓ ≡ 0 (mod 8)] of Eisenstein polynomials of
weights divisible by 8 is finitely generated over C.

In order to obtain the normalization type theorem, we shall prepare two
lemmata.

Lemma 2. C[x]Hg is integral over C[φ
Hg

ℓ (x)].

∗This formula seems to be known to some experts including Professor A.Munemasa [4].
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Proof. First we recall that

r∑
j=1

zkj = 0, k = 1, 2, . . . , r

have no common zero other than z1 = z2 = · · · = zr = 0. We apply this
to our case. Suppose that φ8·1(x) = φ8·2(x) = · · · = φ8kg(x) = 0, where
kg = |Hg|/|Kg|. Since Hg contains Fg

2, σ(x0) = xa = 0 for σ = a ∈ Fg
2. This

completes the proof of Lemma 2.

In some parts of the following, we assume non-vanishingness of certain
Eisenstein polynomial. This seems very likely true, however, the author does
not have its proof in his hand. We give it as a conjecture.

Conjecture: there exists a non-vanishing Eisenstein polynomial of weight
̸≡ 0 (mod 8).

Lamma 3. Assume that Conjecture is true. Then the field of fractions
of C[φ

Hg

ℓ ] coincides with the field of fractions of C[x]Hg .

Proof. This is a consequence of Corollary 4.4 in [5]. On the treatment
of the graded ring, we refer to [2]. For the graded ring S, we denote by
S(d) generated by elements of degrees multiple of d. A quotient field of S is
written as F (S) and its degree 0 part as F0(S).

The Galois group of the extension C(x)/C(x)Gg is Gg. If we take an

element of σ from the automorphism group of C(x)/C(φ
Hg

ℓ ), then σ should
preserve φ8. By the mentioned corollary, σ is an element of Gg. As a con-

sequence, we have C(x)Gg = C(φ
Hg

ℓ : ℓ ≡ 0 (mod 8)). Write S for C[x]Hg

and take a weight 4 element ξ from F (S).

C(x)Hg = F (C[x]Hg)

= F (S)

= F0(S)(ξ)

= F0(S
(8))(ξ)

= F0(C(φ
Hg

ℓ (x) : ℓ ≡ 0 (mod 8)))(ξ)

= F0(C(φ
Hg

ℓ ))(ξ)

= C(φ
Hg

ℓ )
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This completes the proof of Lemma 3.

Combining the lemmata above, we get

Theorem 4. Assume that Conjecture is true. Then the invariant ring
C[x]Hg of the finite group Hg is the normalization of the ring C[φ

Hg

ℓ ] of
Eisenstein polynomials in its field of fractions.

The following ”Theorem” could be obtained as ”Corollary” of Theorem
4 if we drop the assumption in Theorem 4. The proof is the same as that of
Theorem 4.

Theorem 5. The ring C[x]Gg of the weight enumerators of Type II codes

is the normalization of C[φ
Hg

ℓ : ℓ ≡ 0 (mod 8)] in its field of fractions.

4. Concluding remarks. (1) For g = 1, 2, the ring C[xa]
Hg could be

generated by Eisenstein polynomials. In our paper [7], we gave the generators
of C[φH2

ℓ : ℓ ≡ 0 (mod 8)], the weights ℓ of which are

8, 24, 32, 40, 48, 56, 64, 72, 80, 96.

This ring is strictly smaller than C[x]G2 and Theorem 5 says that if we take
the normalization, we get the whole ring C[x]G2 . In order to see this, take
the Golay code g24 of length 24. If we add the weight enumerator W 2

g24
to

the ring of Eisenstein polynomial, we get the whole ring. This means that
W 2

g24
is integral over the ring of Eisenstein polynomial and is contained in the

field of Eisenstein polynomials. It is easy to find such isobaric polynomials
P,Q, P ′, Q′ as, omitting H2 in the notation of φH2

ℓ ,

(W 2
g24

)2 + P (φ8, φ24)W
2
g24

+Q(φ8, φ24, φ32, φ40, φ48) = 0,

W 2
g24

= P ′(φ8, φ24, φ32, φ40, φ48, φ56)/Q
′(φ8, φ24, φ32).

(2) The approach of this paper suggests the theory of Eisenstein polyno-
mials for arbitrary finite group. Along this line Yano [9] studied the rings of
Eisenstein polynomials for finite unitary reflection groups.

(3) Suppose g = 1. Under the theta map, an Eisenstein polynomial is
transformed into a modular form for SL(2,Z). Due to some computations,
the derived modular forms seem to enjoy properties similar to Eisenstein
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series. For further investigations of Eisenstein polynomials, consult Miezaki
[3].
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