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Abstract. We complete the program indicated by the Ansatz of
D’Hoker and Phong in genus 4 by proving the uniqueness of the
restriction to Jacobians of the weight 8 Siegel cusp forms satisfying
the Anstaz. We prove dim[Γ4(1, 2), 8]0 = 2 and dim[Γ4(1, 2), 8] =
7. In each genus, we classify the linear relations among the self-dual
lattices of rank 16. We extend the program to genus 5 by construct-
ing the unique linear combination of theta series that satisfies the
Ansatz.

1. Introduction

Modular forms of weight 8 with respect to the theta group Γg(1, 2)
have recently been a useful tool in Physics. Some are fundamental in
the construction of a chiral superstring measure, cf. [6], [7], [8], [9] and
[14], for small genera. Let Hg be the Siegel upper half space and let the
Jacobian locus , Jacg ⊆ Hg, be the set of period matrices of compact
Riemann surfaces. For g ≤ 3, Jacg is dense in Hg. According to the
Anstaz of D’Hoker and Phong, we wish to find a modular form, Ξ(g)[0],
of weight 8 with respect to Γg(1, 2) possessing the splitting property (1)
and the vanishing trace property (2):

(1) Ξ(g)[0]

(
τ1 0
0 τ2

)
= Ξ(g−k)[0](τ1) Ξ(k)[0](τ2)

with τ1 ∈ Jacg−k and τ2 ∈ Jack and

(2) Ξ(g) = Tr
(
Ξ(g)[0]

)
=

∑
γ∈Γg(1,2)\Γg

Ξ(g)[0]|8γ =
∑

even chars m

Ξ(g)[m]

vanishes along Jacg.

Due to the splitting property and the fact that the accepted solution
in genus one, Ξ(1)[0](τ) = η(τ)12θ0(τ)4, is a cusp form, all of the Ξ(g)[0]
should be cusp forms on the Jacobian locus. For g ≤ 4, the Ξ(g)[0] will
also be Siegel cusp forms. The existence of cusp forms with the prop-
erties (1) and (2) provides some vindication of the Anstaz of D’Hoker
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and Phong. Further vindication would be provided by the uniqueness
of the restriction to the moduli space of curves, the relevant domain
for physics. We formulate this as a third condition.

(3) Let Ξ(1)[0] = η12θ4
0. If Ξ(g)[0], Ξ̃(g)[0] ∈ [Γg(1, 2), 8] both satisfy

properties (1) and (2), then Ξ(g)[0] = Ξ̃(g)[0] upon restriction to Jacg.

The splitting property (1) means that the chiral superstring measure
is the product measure on the block diagonal. The trace property (2)
means that the cosmological constant vanishes. The uniqueness prop-
erty (3) means that the desired family of solutions, {Ξ(g)[0]}, is uniquely
determined on the Jacobian locus by the genus one solution Ξ(1)[0].

D’Hoker and Phong gave an expression for Ξ(2)[0] and they proved
that is well defined (uniqueness). In [2] the existence and the unique-
ness of Ξ(3)[0] has been proven. The existence of Ξ(4)[0] has been proven
in [14] and [5]. Moreover in [3] a relative uniqueness for Ξ(4)[0] has been
proven. This relative uniqueness is due to two facts.

First in genus 4, there is a cusp form of weight 8 with respect to
the full integral symplectic group Γ4, the Schottky form J that van-
ishes along Jac4 and hence along the block diagonal period matrices
in genus 4. If Ξ(4)[0] satisfies properties (1) and (2), then so does
Ξ(4)[0] + cJ ; thus the two desired properties cannot be uniquely sat-
isfied by a Siegel modular cusp form in genus four. Accordingly, the
uniqueness property (3) only requires the uniqueness of the restriction
of Ξ(g)[0] to the moduli space of curves and this is consistent with the
treatment in physics.

Second, in [3] the uniqueness of Ξ(4)[0] is proved only among the mod-
ular forms that are polynomials in the second order theta-constants.
We know, as a consequence of the results in [21] and [22], that when
g ≤ 3 all modular forms with respect to Γg(1, 2) are polynomials in
the second order theta-constants. Recently in [18] two of the authors
proved that this statement is false when g ≥ 4.

Hence, a priori, in genus 4, there could be other modular forms with
the properties (1) and (2) that cannot be written as polynomials in the
second order theta-constants. Our first goal in this article is to prove
the uniqueness property (3) in genus 4 and thus complete the program
begun by D’Hoker and Phong through genus 4. The proof is based on
the knowledge of the optimal slope of a cusp form in genus 4.

Our second goal is to construct Ξ(5)[0] in genus 5. In every genus, we
classify the linear relations among the eight classes of self-dual lattices
of rank 16. We use this knowledge to construct Ξ(5)[0] as a linear
combination of theta series. We prove the relative uniqueness of Ξ(5)[0]:
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it is the only linear combination of theta series in genus 5 satisfying
properties (1) and (2).

Using the methods of classical automorphic forms, we give indepen-
dent proofs in all genera g ≤ 5, although for motivation we are highly
indebted to [3], [6], [7], [8], [9], [14] and [25]. To state our main Theo-

rem, we introduce J (g) = ϑ
(g)
E8⊕E8

−ϑ
(g)

D+
16

for arbitrary genus g. If g = 4,

we get the Schottky form J which we already mentioned. We prove:

Theorem 1. Let ϑ(g) be the vector of the genus g theta series of the
six odd self-dual rank 16 lattices. Let {Ξ̂j}5

j=0 ⊆ C6 be the dual basis to

{τ j}5
j=0 ⊆ C6 for τ j = (0, 2j, 4j, 8j, 16j, 32j) and τ 0 = (1, 1, 1, 1, 1, 1).

Set Ξ̂
(g)
j = Ξ̂j · ϑ(g). For all g ≥ 0, we have

(4) ϑ(g) = τ 5 Ξ̂
(g)
5 + τ 4 Ξ̂

(g)
4 + τ 3 Ξ̂

(g)
3 + τ 2 Ξ̂

(g)
2 + τ Ξ̂

(g)
1 + 1 Ξ̂

(g)
0 .

Set Ξ(g)[0] = Ξ̂
(g)
g − 17·89·227

219·3·5·72·33
J (g) ∈ [Γg(1, 2), 8]. For g ≤ 4, the Ξ(g)[0]

are cusp forms but Ξ(5)[0] is only a cusp form on the Jacobian locus.
The family {Ξ(g)[0]} satisfies both properties (1) and (2) of the Ansatz
for g ≤ 5 and property (3) for g ≤ 4. Also, Ξ(5)[0] is the unique linear
combination of theta series in [Γ5(1, 2), 8] that satisfies both proper-
ties (1) and (2).

And so we leave genus 5 where we found genus 4, with the con-
struction of a Siegel modular form that satisfies Ansatz properties (1)
and (2) but whose uniqueness is only proven among the span of the
theta series. The uniqueness property (3) for Ξ(5)[0] would follow if we
could prove dim[Γ5(1, 2), 8] = 8.

2. Notation and known results

For a domain D ⊆ C, let Vg(D) be the g-by-g symmetric matrices
with coefficients in D. For D ⊆ R, let Pg(D)semi ⊆ Vg(D) be the
semidefinite elements and let Pg(D) be the definite elements. Let Hg be
the Siegel upper half space of genus g, i.e. the set of g-by-g symmetric
complex matrices with positive definite imaginary part. The symplectic
group Γg = Sp(g, Z) acts on Hg via(

A B
C D

)
◦ τ := (Aτ + B)(Cτ + D)−1.

Here we think of elements of Γg as consisting of four g × g blocks.
For r ∈ 1

2
Z and γ ∈ Γg, we set

(f |rγ)(τ) = det(Cτ + D)−rf(γ ◦ τ)
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for some choice of square root. Let Γ be a subgroup of finite index in
Γg, we say that a holomorphic function f defined on Hg is a modular
form of weight r with respect to Γ if

∀γ ∈ Γ,∀τ ∈ Hg, (f |rγ)(τ) = f(τ).

and if additionally f is holomorphic at all cusps when g = 1. We denote
by [Γ, r] the vector space of such functions.

For holomorphic f : Hg → C we define

Φ(f)(τ1) = lim
λ−→+∞

f

(
τ1 0
0 iλ

)
when this limit exists for all τ1 ∈ Hg−1. In particular, this operator
maps [Γg, r] to [Γg−1, r] and [Γg(1, 2), r] to [Γg−1(1, 2), r]. This operator
has a relevant importance in the theory of modular forms, we refer to
[16] or [12] for details. In the case of the full modular group, a cusp
form is a modular form that is in the kernel of the Φ operator. In the
case of a subgroup of the modular group, a modular form is a cusp
form if

∀γ ∈ Γg, Φ(f |rγ) = 0.

We shall denote by [Γ, k]0 the subspace of cusp forms. We shall also use
the Witt homomorphism Ψ∗

ij : [Γi+j(1, 2), k] → [Γi(1, 2), k]⊗[Γj(1, 2), k]
that is the pullback of the map Ψij : Hi × Hj → Hi+j defined by

Ψij(τ1, τ2) =

(
τ1 0
0 τ2

)
. For all f ∈ [Γg(1, 2), k] we have the following

formula for the Fourier coefficients of the image Ψ∗
ijf :

(5) a
(
T1 ⊗ T2; Ψ

∗
ijf

)
=

∑
T=

„

T1 ∗
∗ T2

«

∈1
2
Pg(Z)

a(T ; f).

3. The Theta Group

Before proceeding to the theta group, we recall the theta functions.
For τ ∈ Hg, z ∈ Cg and ε, δ ∈ Fg

2, where F2 denotes the abelian
group Z/2Z = {0, 1}, the associated theta function with characteristic
m = [ε, δ] is

θm(τ, z) = θ

[
ε
δ

]
(τ, z)

=
∑
n∈Zg

e (1/2 · (n + ε/2)′τ(n + ε/2) + (n + ε/2)′(z + δ/2)) .

Here we denote by X ′ the transpose of X and e( ) stands for exp(2πi ).
As a function of z, θm(τ, z) is odd or even depending on whether the
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scalar product ε·δ ∈ F2 is equal to 1 or 0, respectively. Theta-constants
are restrictions of theta functions to z = 0. The product of two theta-
constants is a modular form of weight 1 with respect to a subgroup of
finite index of Γg.

Now, we discuss the basic properties of the theta group, Γg(1, 2). For
a g-by-g real matrix X, we let X0 ∈ Rg denote its diagonal. We write
Γg(n, 2n) for the subgroup of Γg defined by γ ≡ 12g mod n and

(AB′)0 ≡ (CD′)0 ≡ 0 mod 2n.

Because the theta group is stable under transpose, we may also use the
conditions (A′C)0 ≡ (B′D)0 ≡ 0 mod 2n.

The significance of the theta group Γg(1, 2) is the following: Γg acts

on F2g
2 via [

a
b

]
·
(

A B
C D

)
=

(
A B
C D

)′ [
a
b

]
+

[
(A′C)0

(B′D)0

]
.

If we set ζ =

[
a
b

]
and γ =

(
A B
C D

)
, we may write this more compactly

as ζ · γ = γ′ζ + ε(γ), where ε(γ) =

[
(A′C)0

(B′D)0

]
. The existence of this

action follows from the classical transformation of the theta-constants

∀γ ∈ Γg, θ[ζ]|1/2γ ∈ e
(

1
8
Z

)
θ[ζ · γ].

From the definitions it is not difficult to see that

Γg(1, 2) = StabΓg

[
0
0

]
and θ

[
0
0

]8

∈ [Γg(1, 2), 4] .

The group Γg acts transitively on the even characteristics, so that
the index of Γg(1, 2) in Γg is 2g−1(2g +1) and we have the coset decom-
position

Γg =
∪

even ζ

Γg(1, 2) γζ ,

where γζ ∈ Γg is any element with

[
0
0

]
· γζ = ζ in F2g

2 . The stabilizers

of the nonzero characteristics are given by the conjugate subgroups
StabΓg [ζ] = γ−1

ζ Γg(1, 2)γζ .
We let ∆g(Z) denote the subgroup of Γg with “C = 0.” The double

coset decomposition of Γg with respect to Γg(1, 2) and ∆g(Z) is of
primary interest to us. The following Proposition shows that there are
just two double cosets: the I-cusp, TIC, and the other cusp, TOC.
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Proposition 2. We have the double coset decomposition

Γg = Γg(1, 2)∆g(Z) ∪ Γg(1, 2)

(
I 0
I I

)
∆g(Z),

where I = Ig denotes the identity matrix of degree g. The first double
coset contains 2g single cosets, the second 2g−1(2g − 1).

Proof. We prove the double coset decomposition by relating it to the
single coset decomposition, so we first give representatives γζ for the

single coset decomposition. For even ζ =

[
a
b

]
, we may choose γζ as

γζ =

(
I 0

diag(a) I

)(
I S
0 I

)
=

(
I S

diag(a) I + diag(a)S

)
with any S ∈ Vg(Z) such that Sa + S0 = b. When a = 0, we just take
S = diag(b). When a 6= 0, one way to get S is to take S = βb′ + bβ′

for any odd characteristic

[
a
β

]
.

We will show that the right action of ∆g(Z) on the set of the even

characteristics has two orbits:

[
0
∗

]
with 2g elements and

[
6= 0
∗

]
with

2g−1(2g − 1) elements. For ζ =

[
0
b

]
, we have γζ ∈ Γg(1, 2)∆g(Z)

because γζ =

(
I diag(b)
0 I

)
. For ζ =

[
a
b

]
, with a 6= 0, we have

γζ ∈ Γg(1, 2)

(
I 0
I I

)
∆g(Z) because for any U ∈ GLg(Z) we have

γζ =

(
I 0

diag(a) I

)(
I βb′ + bβ′

0 I

)
=

(
U−1 0

diag(a)U−1 − U ′ U ′

)(
I 0
I I

)(
U 0
0 (U ′)−1

)(
I βb′ + bβ′

0 I

)
.

To complete the proof we show that

(
U−1 0

diag(a)U−1 − U ′ U ′

)
∈ Γg(1, 2)

for some choice of U . Choose U so that U ′I0 ≡ a mod 2. The defining
conditions, (AB′)0 ≡ (CD′)0 ≡ 0 mod 2, are then satisfied if we note
that (U ′U)0 ≡ U ′I0 mod 2. ¤

The choice of γζ =

(
I 0
I I

)
and of ζ =

[
I0

0

]
as a representative for

the nontrivial double coset is somewhat arbitrary. We have chosen the

even characteristic

[
I0

0

]
because its upper and lower parts are invariant
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under permutations and the representative γζ because it is a direct sum
of SL2(Z) matrices.

We now study the Fourier expansions at these two cusps. For S ∈

Vg(R), let t(S) =

(
I S
0 I

)
∈ Spg(R). For U ∈ GLg(R), let u(U) =(

U 0
0 (U ′)−1

)
∈ Spg(R). For A,B ∈ Vg(C), set 〈A,B〉 = tr(AB).

The I-Cusp. The translation lattice for the I-cusp (TIC) is

{S ∈ Vg(Z) : t(S) ∈ Γg(1, 2)} = {S ∈ Vg(Z) : S even}.

The dual lattice with respect to 〈 , 〉 is 1
2
Vg(Z). If we multiply the

above translation lattice by 1/2, we get the lattice Xg consisting of
“half-integral” matrices, which is nothing else but the dual lattice of
Vg(Z). The similarity lattice for TIC is

{U ∈ GLg(Z) : u(U) ∈ Γg(1, 2)} = GLg(Z).

Therefore, an f ∈ [Γg(1, 2), k]0 has a Fourier expansion at TIC

f(τ) =
∑

T

a(T )e (〈τ, T 〉)

where T ∈ 1
2
Pg(Z) runs over integral forms multiplied by 1

2
and, for all

U ∈ GLg(Z), a(U ′TU) = det(U)k a(T ).

The Other Cusp. Let M =

(
I 0
I I

)
and let Γg(1, 2)M denote

M−1Γg(1, 2)M . The translation lattice L for the other cusp (TOC) is

given by S such that t(S) stabilizes

[
I0

0

]
.

L = {S ∈ Vg(Z) : t(S) ∈ Γg(1, 2)M}
= {S ∈ Vg(Z) : SI0 + S0 ≡ 0 mod 2}.

Lemma 3. Let Eij ∈ Vg(Z) be the matrix with 1 in the (i, j) and (j, i)
spots and zeroes elsewhere. The lattice L contains 2Vg(Z), diag(Zg)
and Eij + Ejk + Eki for all distinct triples i, j, k ∈ {1, 2, . . . , g}.

Proof. This is an easy computation from the defining condition:
SI0 + S0 ≡ 0 mod 2. ¤

Actually, the above elements span L, although the last group Eij +
Ejk + Eki is linearly dependent over F2 for g > 3. Furthermore, the

indices are [Vg(Z) : L] = 2g−1 and [L : 2Vg(Z)] = 21+(g
2) but we need

none of these facts.
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Definition 4. Elements of the lattice 4L∗ are called very even.

From 2Vg(Z) ⊆ L ⊆ Vg(Z) we see that the dual lattice, L∗, satisfies
1
2
Xg ⊇ L∗ ⊇ Xg, so that the elements of 4L∗ are in fact even. Since

diag(Zg) ⊆ L, the diagonals of L∗ are integral and the diagonals of
very even forms are multiples of 4.

The similarity group G for TOC is given by the U such that u(U)

stabilizes

[
I0

0

]
:

G = {U ∈ GLg(Z) : u(U) ∈ Γg(1, 2)M}
= {U ∈ GLg(Z) : U ′I0 ≡ I0 mod 2 }.

A useful comment here is that G contains all permutation matrices and
all diagonal sign changes.

Therefore, an f ∈ [Γg(1, 2), k]0 has a Fourier expansion at TOC

(f |M)(τ) =
∑

T

b(T )e (〈τ, T 〉)

where T ∈ L∗ ∩ Pg(Q) runs over very even forms multiplied by 1
4

and,

for all U ∈ G, b(U ′TU) = det(U)k b(T ).

Proposition 5. Let f ∈ [Γg(1, 2), k]. The form f is a cusp form if
and only if Φ(f) = 0 and Φ(f |M) = 0.

Furthermore, let the coset representatives for Γg(1, 2)\Γg be written

γζ =

(
I 0

diag(a) I

)(
I S
0 I

)
= Ma t(S).

For S ∈ Vg(Z), let π(S) ∈ Vg−1(Z) be the lower (g−1)-by-(g−1) block.
For a = (0; a′), we have Φ(f |Ma t(S)) = Φ(f)|Ma′ t(π(S)).
For a = I0 + (0; c′), we have Φ(f |Ma t(S)) = Φ(f |M)|Mc′ t(π(S)).

Proof. The form f is a cusp form if and only if Φ(f |γζ) = 0 for
every γζ in the single coset decomposition of Γg(1, 2)\Γg. We rely
on two properties of the Φ map. First, for any F ∈ [Γ, k], we have
Φ(F |t(S)) = Φ(F )|t(π(S)). Second, let I2 ∈ Γ1 be the identity matrix;
for γ′ ∈ Γg−1, we have Φ(F |I2 ⊕ γ′) = Φ(F )|γ′. Here we understand
that (

a b
c d

)
⊕

(
A B
C D

)
=


a 0 b 0
0 A 0 B
c 0 d 0
0 C 0 D

 .
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There are two cases depending upon a. If a begins with 0, so that
a = (0; a′), then Ma = I2 ⊕ Ma′ and

Φ(f |Ma t(S)) =

Φ(f |Ma)|t(π(S)) = Φ(f |I2 ⊕ Ma′)|t(π(S)) = Φ(f)|Ma′ t(π(S)).

If a begins with 0, define c = a − I0; then c begins with 0, so that
c = (0; c′). Note that M = MI0 and that Ma = MMc. We have

Φ(f |Ma t(S)) = Φ(f |MMc)|t(π(S)) = Φ(f |M)|Mc′ t(π(S)).

Thus, the cases Φ(f |γζ) = 0 follow from Φ(f) = 0 and Φ(f |M) = 0. ¤

4. Lemmata

Let Γ ⊆ Γg be a subgroup of finite index I = [Γg : Γ]. The Norm
map is defined as

Norm : [Γ, k] → [Γg, Ik]

f 7→
∏

γ∈Γ\Γg

f |kγ.

This map naturally induces the map between the associated projective
spaces and we use the same notation Norm again. The next Lemma
shows that if we have a nontrivial subspace S of Siegel cusp forms, all
of whose elements have a norm that is a multiple of a fixed form, then
the dimension of S is one.

Lemma 6. Let Γ ⊆ Γg be a subgroup of finite index I. Let S ⊆ [Γ, k]0
be a subspace. If Norm : P (S) → P

(
[Γg, Ik]0

)
has an image consisting

of precisely one point, then dim S = 1.

Proof. Take A,B ∈ S \ {0}. We will show that B/A is constant
as a meromorphic function on Hg, and thus conclude that dim S = 1.
Let ξ = Norm(A) ∈ [Γg, Ik]0 and note that ξ 6= 0 since A 6= 0. By
assumption, for all x ∈ C there exists a c ∈ C such that Norm(Ax +
B) = c ξ. We will show that c is a polynomial in x. We can evaluate c
by picking τ0 ∈ Hg with ξ(τ0) 6= 0; then

c =
Norm(Ax + B)(τ0)

ξ(τ0)
=

I∏
γ

(
x +

(B|γ)(τ0)

(A|γ)(τ0)

)
.
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However, since c = Norm(Ax + B)/ξ as well, we have

I∏
γ

(
x +

(B|γ)

(A|γ)

)
=

I∏
γ

(
x +

(B|γ)(τ0)

(A|γ)(τ0)

)
.

Letting x = −B/A, we see that B/A is a meromorphic function with
a discrete image and hence is a constant. ¤

Definition 7. A function φ : Pg(R)semi → R≥0 is called type one if
1. For all s ∈ Pg(R), φ(s) > 0,
2. for all λ ∈ R≥0 and s ∈ Pg(R)semi, φ(λs) = λφ(s),
3. for all s1, s2 ∈ Pg(R)semi, φ(s1 + s2) ≥ φ(s1) + φ(s2).

Type one functions are continuous on Pg(R) and respect the par-
tial order on Pg(R)semi. We will need the acquaintance of two type
one functions: the Minimum function m(s) = infu∈Zg\{0} u′su and its
convex dual w(s) = infu∈Pg(R) 〈u, s〉/m(u), the dyadic trace.

Recall the definition of the slope.

For f ∈ [Γ, k]0, let supp(f) = {T ∈ Pg(Q) : a(T ; f) 6= 0};

m(f) = min m (supp(f)) and slope(f) =
k

m(f)
.

We know that the minimal slope on Ag = Γg\Hg is: 12, 10, 9, 8 for
g = 1, 2, 3, 4, respectively, cf. [24] and in particular the Corollary to
Theorem 3. It is rather easy to check that any Siegel modular form
that attains this slope is a power of ∆ ∈ [Γ1, 12]0, X10 ∈ [Γ2, 10]0,
X18 ∈ [Γ3, 18]0 or J ∈ [Γ4, 8]0 in g = 1, 2, 3 or 4, respectively.

In the next Lemma, we extend this result to subgroups Γ of index I
by looking at the slope of the average vanishing, k/µ(f), where

µ(f) =
1

I

I∑
γ∈Γ\Γg

m (f |γ) .

Lemma 8. Let Γ ⊆ Γg be a subgroup of finite index I. Let f ∈
[Γ, k]0. If k/µ(f) is the optimal value: 12, 10, 9, 8 for g = 1, 2, 3, 4,
respectively, then Norm(f) ∈ [Γg, Ik]0 is a constant multiple of a power
of ∆, X10, X18, J , respectively.

Proof. The slope of the level one Norm(f) is Ik/m (Norm(f)).
Therefore, it suffices to prove that m (Norm(f)) ≥ Iµ(f). Note that m
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is a type one function satisfying m(s1 + s2) ≥ m(s1) + m(s2). We have

m (Norm(f)) = m

 ∏
γ∈Γ\Γg

f |γ

 = min m

(
supp

(
I∏
γ

f |γ

))

≥ min m

(
I∑
γ

supp(f |γ)

)
≥ min

I∑
γ

m (supp(f |γ))

=
I∑
γ

min m(supp(f |γ)) =
I∑
γ

m(f |γ) = Iµ(f). ¤

The dyadic trace, defined as w(s) = infu∈Pg(R) 〈u, s〉/m(u), also has
a characterization as a supremum [19]. A dyadic representation of
a form T ∈ Pg(Q) is given by αi > 0 and vi ∈ Zg\{0} such that
T =

∑
i αiviv

′
i. Since 〈T, u〉 =

∑
i αi〈viv

′
i, u〉 ≥

∑
i αim(u), it follows

from the definition of the dyadic trace that w(T ) ≥
∑

i αi for any
dyadic representation. In fact, we have

w(T ) = sup{
∑

i

αi : over all dyadic representations
∑

i

αiviv
′
i of T}

and that this supremum is attained by a particular dyadic representa-
tion. The dyadic trace is a useful tool in the geometry of numbers.

Lemma 9. Let T ∈ Pg(Q) with g = g1 + g2, T =

(
T1 W
W ′ T2

)
for

T1 ∈ Pg1(Q), T2 ∈ Pg2(Q), W ∈ Matg1×g2(Q). We have

w(T ) ≤ w(T1) + w(T2).

Furthermore, we have equality if and only if W = 0.

Proof. Let T =
∑

i αiviv
′
i with αi > 0 and vi ∈ Zg \ {0} be a dyadic

representation of T that attains the dyadic trace: w(T ) =
∑

i αi. We
use π1(v), π2(v) to denote the first g1 and the last g2 coordinates of v.
For j = 1, 2

Tj =
∑

i:πj(vi) 6=0

αiπj(vi)πj(vi)
′

is a dyadic representation of Tj so that w(Tj) ≥
∑

i:πj(vi)6=0 αi. There-

fore we have

w(T1) + w(T2) ≥
∑

i

αi +
∑

i:π1(vi)6=0 and π2(vi)6=0

αi ≥
∑

i

αi = w(T ).
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This is the first assertion. Equality can be attained only if the second
sum above is empty. In this case we have

T =
∑

i

αiviv
′
i =

∑
i

αi

(
π1vi

π2vi

) (
π1v

′
i π2v

′
i

)
=

∑
i:π1(vi)=0

αi

(
π1vi

π2vi

) (
π1v

′
i π2v

′
i

)
+

∑
i:π2(vi)=0

αi

(
π1vi

π2vi

) (
π1v

′
i π2v

′
i

)
=

(
0 0
0 T2

)
+

(
T1 0
0 0

)
=

(
T1 0
0 T2

)
.

This shows W = 0 and so w(T ) = w(T1) + w(T2) indeed holds. ¤
Lemma 10. Let f ∈ [Γg(1, 2), k] for g ≥ 2. If f ∈ ker Ψ∗

1,g−1, then we
have m(f) ≥ 1.

Proof. Recall that the Fourier expansion of f is

f(τ) =
∑

T

a(1
2
T ; f)e

(
〈τ, 1

2
T 〉

)
with T ∈ Pg(Z) since ker Ψ∗

1,g−1 ⊆ [Γg(1, 2), k]0. For 1
2
T ∈ supp(f) we

will show that m(T ) ≥ 2. It suffices to prove that a
(

1
2
(1 ⊕ T0); f

)
= 0

for all T0 ∈ Pg−1(Z) because, if m(T ) = 1, then T is GLg(Z)-equivalent
to 1 ⊕ T0.

We will show that a
(

1
2
(1 ⊕ T0); f

)
= 0 by induction on w(T0). The

base case of the induction is satisfied because f is a cusp form. Since
Ψ∗

1,g−1f = 0, its 1
2
1 ⊗ 1

2
T0 Fourier coefficient is also 0 and

(6) 0=
∑

v∈Zg−1

a

(
1
2

(
1 v
v′ T0

))
=a

(
1
2

(
1 0
0 T0

))
+

∑
v 6=0

a

(
1
2

(
1 v
v′ T0

))

All the indices

(
1 v
v′ T0

)
are GLg(Z)-equivalent to 1 ⊕ Tv for some

Tv ∈ Pg−1(Z). By Lemma 9 we have

1 + w(Tv) = w

(
1 0
0 Tv

)
= w

(
1 v
v′ T0

)
< 1 + w(T0) for v 6= 0,

so that w(Tv) < w(T0) for v 6= 0. By the induction hypothesis, we have

a

(
1
2

(
1 v
v′ T0

))
= a

(
1
2

(
1 0
0 Tv

))
a

(
1
2
(1 ⊕ Tv); f

)
= 0

for v 6= 0 and so a

(
1
2

(
1 0
0 T0

))
= 0 by equation (6) as well. ¤
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5. Dimensions

This next Theorem is a consequence of the work of Igusa and the
facts previously discussed in genus three, cf. [22], [2].

Theorem 11. For g = 1, 2, 3, we have dim [Γg(1, 2), 8]0 = 1.

Proof. Recall that these spaces are nonempty, containing nonzero el-

ements ϑ
(g)
18, P4

(See the appendix for this function). The Minimum func-
tion m is a GLg(Z)-class function, so that m(f |γ) only depends upon
the double coset Γg(1, 2)γ∆g(Z). Hence, for nontrivial f ∈ [Γg(1, 2), 8]0
we have, by the double coset decomposition of Proposition 2, (set
I = 2g−1(2g + 1))

µ(f) =
1

I

I∑
γ∈Γg(1,2)\Γg

m (f |γ) =
2

2g + 1
m(f) +

2g − 1

2g + 1
m(f |

(
I 0
I I

)
).

The indices at TIC consist of 1
2

times integral forms and so m(f) ≥
1
2
. The indices at TOC consist of 1

4
times very even forms and so

m(f |
(

I 0
I I

)
) ≥ 1. Therefore we have

µ(f) ≥ 2

2g + 1

(
1

2

)
+

2g − 1

2g + 1
(1) =

2g

2g + 1

and we can make the following table of the maximum slope of the
average vanishing for nontrivial elements of [Γg(1, 2), 8]0:

Table 1. Maximum slope for average vanishing.

g k/µ(f)

1
8

2/3
= 12

2
8

4/5
= 10

3
8

8/9
= 9.

By Lemma 8, we know that Norm(f) is some multiple of ∆2 ∈ [Γ1, 24],
X8

10 ∈ [Γ2, 80], X16
18 ∈ [Γ3, 288], respectively.

The image of Norm : P
(
[Γg(1, 2), 8]0

)
→ P

(
[Γg, ∗]0

)
consists of one

point in these cases so that dim [Γg(1, 2), 8]0 = 1 by Lemma 6. ¤
Theorem 12. For g = 2, 3, we have [Γg(1, 2), 8] ∩ ker Ψ∗

1,g−1 = {0}.
For g = 4, we have [Γ4(1, 2), 8] ∩ ker Ψ∗

1,3 = CJ .
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Proof. By Lemma 10, an f ∈ [Γg(1, 2), 8] ∩ ker Ψ∗
1,g−1 has m(f) ≥ 1.

Therefore, as in the proof of the previous Theorem,

µ(f) ≥ 2

2g + 1
(1) +

2g − 1

2g + 1
(1) = 1

and f has 8/µ(f) at most 8. Hence f = 0 in g = 2, 3 and Norm(f) is
a multiple of J136 in g = 4 by Lemma 8.

In g = 4 therefore, the image of the map

Norm : P
(
[Γ4(1, 2), 8] ∩ ker Ψ∗

1,3

)
→ P ([Γ4, 8 · 136]0)

has just one point. Therefore, we have dim [Γ4(1, 2), 8] ∩ ker Ψ∗
1,3 = 1

by Lemma 6, and necessarily [Γ4(1, 2), 8] ∩ ker Ψ∗
1,3 = CJ . ¤

6. Linear Relations among Theta series

A more general way to construct modular forms is to use theta series,
in particular if L is a self-dual lattice of rank m, with 8 deviding m,
then we have the associated quadratic form S and the theta series

ϑ
(g)
L (τ) =

∑
X∈Zm, g

e(1/2 · tr(S[X]τ))

is a modular form of weight m/2 relative to Γg(1, 2). We let [Γg(1, 2), k]ϑ

denote the subspace spanned by theta series of self-dual lattices of
rank 2k.

There are eight self-dual lattices of rank 16, two even lattices and six
odd. The theta series are elements of [Γg, 8] and [Γg(1, 2), 8], respec-
tively. In this section we find all the linear relations among these theta
series for every genus. We give two applications. First, we derive the
results dim[Γ4(1, 2), 8] = 7 and dim[Γ4(1, 2), 8]0 = 2. Second, we push
the physicists’ program to success in genus five and prove our main
Theorem 1.

The eight self-dual lattices of rank 16 are all found by Kneser’s gluing
method. We use the notation in [4], Table 16.7. For 4|n, D+

n = Dn ∪
([1] + Dn) is unimodular; D+

8 is commonly denoted by E8. The two
even lattices are given by E8 ⊕E8 and D+

16. An odd lattice is given by
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Z4 ⊕ D+
12 and another by

(D8 ⊕ D8)
+ = D8 ⊕ D8 ∪ ([1] × [2] + D8 ⊕ D8)

∪ ([2] × [1] + D8 ⊕ D8) ∪ ([3] × [3] + D8 ⊕ D8), where

[1] × [2] = [
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
; 0, 0, 0, 0, 0, 0, 0, 1],

[2] × [1] = [0, 0, 0, 0, 0, 0, 0, 1;
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
],

[3] × [3] = [
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,−1

2
;
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,
1

2
,−1

2
].

Also, we have Z ⊕ A+
15 for

A+
15 = A15 ∪ ([4] + A15) ∪ ([8] + A15) ∪ ([12] + A15),

where [i], for i + j = n + 1, means j coordinates of i
n+1

followed by i

coordinates of −j
n+1

. Finally, we have Z2 ⊕ (E7 ⊕ E7)
+ for

(E7 ⊕ E7)
+ = (E7 ⊕ E7) ∪ ([1] × [1] + (E7 ⊕ E7)), where

[1] × [1] = [
1

4
,
1

4
,
1

4
,
1

4
,
1

4
,
1

4
,−3

4
,−3

4
;
1

4
,
1

4
,
1

4
,
1

4
,
1

4
,
1

4
,−3

4
,−3

4
].

The following Table gives basic information about the theta series

ϑ
(g)
i = ϑ

(g)
Λi

of these lattices, labeled as Λi for i = 0, 1, . . . , 7. Here, τi is

the number of vectors of norm one. It is the coefficient of q1/2 in the

genus one Fourier expansion ϑ
(1)
i , whose leading term is also given. The

space [Γ1(1, 2), 8] is spanned by Ξ(1)[0], ϑ
(1)
0 and ϑ

(1)
6 and the coefficients

τi, bi, ci, of the linear relation ϑ
(1)
i = τi Ξ

(1)[0] + bi ϑ
(1)
0 + ci ϑ

(1)
6 are also

given.

Table 2. The eight self-dual lattices of rank 16.

i Λi τi bi ci ϑ
(1)
i − 1

0 (D8 ⊕ D8)
+ 0 1 0 224q1 + 4096q3/2

1 Z ⊕ A+
15 2 1 0 2q1/2 + 240q1 + 4120q3/2

2 Z2 ⊕ (E7 ⊕ E7)
+ 4 1 0 4q1/2 + 256q1 + 4144q3/2

3 Z4 ⊕ D+
12 8 1 0 8q1/2 + 288q1 + 4192q3/2

4 Z8 ⊕ E8 16 1 0 16q1/2 + 352q1 + 4288q3/2

5 Z16 32 1 0 32q1/2 + 480q1 + 4480q3/2

6 E8 ⊕ E8 0 0 1 480q1

7 D+
16 0 0 1 480q1
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We recall the general set up of [11] for organizing linear relations
among theta series. Let {Li}h

i=1 be a set of self-dual lattices of rank 2k.

Let V = Ch and define Θ(g) : V → [Γg(1, 2), k] by Θ(g)(r) =
∑h

i=1 riϑ
(g)
Li

and the convention ϑ
(0)
Li

= 1. We have a decreasing filtration Vg =

ker Θ(g) of V and the dual increasing filtration Wg = (Vg)
⊥ of the dual

space V ∗. Composing the canonical isomorphism Θ(g)(V ) ∼= V/Vg with
the noncanonical V/Vg

∼= Wg, we have dim[Γg(1, 2), k]ϑ = dim Wg.
The Fourier coefficients of the theta series provide natural elements

of Wg. For T ∈ 1
2
Pg(Z) and ϑ

(g)
Li

(τ) =
∑

T a
(g)
i (T )e (〈T, τ〉), we define

wg(T ) ∈ V ∗ by wg(T )i = a
(g)
i (T ). The wg(T ) for T ∈ 1

2
Pg(Z) span

Wg and linear relations may be presented by giving a basis of Wg in
terms of the wg(T ) or linear combinations thereof. We also define the
component-wise multiplication on V ∗ because this multiplication re-
spects the Wg-filtration: WiWj ⊆ Wi+j. This follows from equation (5)
but one should also note its more detailed consequence:

WiWj =
(
ker Ψ∗

ij ◦ Θ(g)
)⊥ ⊆

(
ker Θ(g)

)⊥
= Wi+j.

For example, the even self-dual lattices of rank 16, {E8 ⊕ E8, D
+
16},

give the problem of Witt : find the dependence of the theta series in
each genus. From results of Igusa and Kneser, cast in the above form,
we have W0 = W1 = W2 = W3 = 〈1〉 and W4 = V ∗ where 1 is the
vector of all ones. This is a nice way to present the linear relations. By

a result of Igusa [17], J = ϑ
(4)
6 −ϑ

(4)
7 gives the Schottky form in genus 4.

The representation numbers for D4 follow from: r(D`, D4) = 1152
(

`
4

)
,

r(A`, D4) = 0, r(E8, D4) = 1152 · 3150, r(E7, D4) = 1152 · 315, see [11].

Theorem 13. For V = C8, let Θ(g) : V → [Γg(1, 2), 8] be defined by

Θ(g)(r) =
∑7

i=0 riϑ
(g)
i for the eight self-dual lattices of rank 16. For

c, τ, σ ∈ V ∗ given by

τ = w1(
1
2
) = (0, 2, 4, 8, 16, 32, 0, 0),

σ = w4

(
1
2
D4

)
= 1152 (140, 0, 630, 496, 3220, 1820, 6300, 1820),

c = (0, 0, 0, 0, 0, 0, 1, 1),

the filtration Wg =
(
ker Θ(g)

)⊥
is given by W0 = 〈1〉, W1 = 〈1, c, τ〉,

W2 = 〈1, c, τ, τ 2〉, W3 = 〈1, c, τ, τ 2, τ 3〉, W4 = 〈1, c, τ, τ 2, τ 3, τ 4, σ〉
and W5 = V ∗. The relation among the theta series in g = 4 is
det(ϑ(4), σ, τ 4, τ 3, τ 2, τ, c, 1) = 0. For the six odd lattices alone, the
corresponding filtration is W0 = 〈1〉, W1 = 〈1, τ〉, W2 = 〈1, τ, τ 2〉,
W3 = 〈1, τ, τ 2, τ 3〉 and W4 = V ∗.
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Proof. From the definition of Θ(0), we see that W0 = 〈1〉. From

Table 2, we see that ϑ(1) = τ Ξ(1)[0] + (1 − c)ϑ
(1)
0 + c ϑ

(1)
6 so that

W1 = 〈1, c, τ〉. By Theorem 12, the forms vanishing on the reducible
locus H1 × H1 are trivial, so that W2 = W1W1 = 〈1, c, τ, τ 2〉. By
Theorem 12, the forms vanishing on the reducible locus H1 × H2 are
trivial, so that W3 = W1W2 = 〈1, c, τ, τ 2, τ 3〉. Let r ∈ V and note
W1W3 = 〈1, c, τ, τ 2, τ 3, τ 4〉. For r ⊥ W1W3, Θ(4)(r) vanishes on the
reducible locus H1×H3 and is hence a multiple of J (4) by Theorem 12.
Thus Θ(4)(r) = r · σJ (4) by looking at the Fourier coefficient for 1

2
D4;

therefore W4 = 〈1, c, τ, τ 2, τ 3, τ 4, σ〉 and the relation in g = 4 follows im-
mediately. We have W5 ⊇ W1W4 = 〈1, c, τ, τ 2, τ 3, τ 4, σ, cσ, τσ〉 = V ∗.
The corresponding result for the six odd lattices follows by restriction
to the first six coordinates. ¤

Remark 14. Hence, dim[Γg(1, 2), 8]ϑ is 3, 5, 6, 7, 8 for g = 1, 2, 3, 4, 5.

It will be important to compute Witt images of bases for [Γg(1, 2), 8]ϑ.
For brevity, let

c0 =
1

5160960

det(σ, τ 4, τ 3, τ 2, τ, 1)

det(τ 5, τ 4, τ 3, τ 2, τ, 1)
=

89 · 227

219 · 3 · 5 · 72
.

Proposition 15. Let {Ξ̂j}5
j=0 ⊆ C6 be the dual basis to {τ j}5

j=0 ⊆ C6.

Write Ξ̂
(g)
j = Θ(g)(Ξ̂j). For g ≤ 4, we have Ξ̂

(g)
g ∈ [Γg(1, 2), 8]0. We

have Ξ̂
(g)
0 = ϑ

(g)
0 and Ξ̂

(4)
5 = c0J

(4). We have the Witt images

Ψ∗
14Ξ̂

(5)
5 = Ξ̂

(1)
1 ⊗ Ξ̂

(4)
4 +

(
62 Ξ̂

(1)
1 +ϑ

(1)
0

)
⊗ c0J

(4); Ψ∗
23Ξ̂

(5)
5 = Ξ̂

(2)
2 ⊗ Ξ̂

(3)
3 ,

Ψ∗
13Ξ̂

(4)
4 = Ξ̂

(1)
1 ⊗ Ξ̂

(3)
3 ; Ψ∗

22Ξ̂
(4)
4 = Ξ̂

(2)
2 ⊗ Ξ̂

(2)
2 ,

Ψ∗
13Ξ̂

(4)
3 = Ξ̂

(1)
1 ⊗ Ξ̂

(3)
2 + ϑ

(1)
0 ⊗ Ξ̂

(3)
3 ,

Ψ∗
13Ξ̂

(4)
2 = Ξ̂

(1)
1 ⊗ Ξ̂

(3)
1 + ϑ

(1)
0 ⊗ Ξ̂

(3)
2 ,

Ψ∗
13Ξ̂

(4)
1 = Ξ̂

(1)
1 ⊗ ϑ

(3)
0 + ϑ

(1)
0 ⊗ Ξ̂

(3)
1 .

Proof. Consider the filtration of Theorem 13 for the six odd lattices.

For g ≤ 4, we have Ξ̂
(g)
g ∈ [Γg(1, 2), 8]0 because Ξ̂g is annihilated by

〈1, τ, . . . , τ g−1〉 = Wg−1. The relation Ξ̂
(4)
5 = c0J

(4) follows from the

g = 4 relation in Theorem 13 but we may also argue directly: Ξ̂5 is

annihilated by 〈1, τ, . . . , τ 4〉 = W1W3 and so Ξ̂
(4)
5 is a form vanishing on

the reducible locus H1×H3, necessarily Ξ̂
(4)
5 = c J (4) for some constant

c by Theorem 12. By Cramer’s rule we have

Ξ̂
(4)
5 = det(ϑ(4), τ 4, τ 3, τ 2, τ, 1)/ det(τ 5, τ 4, τ 3, τ 2, τ, 1) = c J (4).
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Evaluating at the Fourier coefficient for 1
2
D4, we have 5160960c =

det(σ, τ 4, . . . , 1)/ det(τ 5, τ 4, . . . , 1) so that c = c0. The identity Ξ̂
(g)
0 =

ϑ
(g)
0 follows from τ0 = 0.
We now consider the Witt images. Write the map Θ(4) ∈ V ∗ ⊗

[Γg(1, 2), 8] in the basis {τ j}5
j=0 so that ϑ(4) =

∑
j Θ(4)(Ξ̂j)τ

j or

ϑ(4) = τ 5 c0J
(4) + τ 4 Ξ̂

(4)
4 + τ 3 Ξ̂

(4)
3 + τ 2 Ξ̂

(4)
2 + τ Ξ̂

(4)
1 + 1 ϑ

(4)
0 .

That the Witt images of Ψ∗
13 are as stated follows from

τ 4 Ψ∗
13Ξ̂

(4)
4 + τ 3 Ψ∗

13Ξ̂
(4)
3 + τ 2 Ψ∗

13Ξ̂
(4)
2 + τ Ψ∗

13Ξ̂
(4)
1 + 1 Ψ∗

13ϑ
(4)
0

=ϑ(1) ⊗ ϑ(3)

=
(
τ Ξ̂

(1)
1 + 1 ϑ

(1)
0

)
⊗

(
τ 3 Ξ̂

(3)
3 + τ 2 Ξ̂

(3)
2 + τ Ξ̂

(3)
1 + 1 ϑ

(3)
0

)
=τ 4

(
Ξ̂

(1)
1 ⊗ Ξ̂

(3)
3

)
+ τ 3

(
Ξ̂

(1)
1 ⊗ Ξ̂

(3)
2 + ϑ

(1)
0 ⊗ Ξ̂

(3)
3

)
+

τ 2
(
Ξ̂

(1)
1 ⊗ Ξ̂

(3)
1 +ϑ

(1)
0 ⊗ Ξ̂

(3)
2

)
+τ

(
Ξ̂

(1)
1 ⊗ ϑ

(3)
0 +ϑ

(1)
0 ⊗ Ξ̂

(3)
1

)
+1ϑ

(1)
0 ⊗ϑ

(3)
0 .

The others are similar but one needs to use τ 6 = 62τ 5 − 1240τ 4 +
9920τ 3 − 31744τ 2 + 32768τ . ¤

The splitting of these forms may be used to provide finer information.

Theorem 16. We have [Γ4(1, 2), 8]0 = CJ + C Ξ(4)[0].

Proof. Take f ∈ [Γ4(1, 2), 8]0 and let Ψ∗
1,3f = α Ξ(1)[0] ⊗ Ξ(3)[0]. So

f − αΞ̂
(4)
4 [0] is in ker Ψ∗

1,3 and is a multiple of J by Theorem 12. ¤
We wish to compute the dimension of [Γg(1, 2), 8] for g ≤ 4. We

know that dim [Γ1(1, 2), 8] = 3, spanned by ϑ
(1)
0 , Ξ(1)[0] and ϑ

(1)
6 . Our

method for g = 3, 4 does not succeed in g = 2, so we must make use
of the result of Igusa and Runge that dim [Γ2(1, 2), 8] = 4. A basis for

[Γ2(1, 2), 8] is then given by ϑ
(2)
0 , Ξ̂

(2)
1 , Ξ(2)[0] and ϑ

(2)
6 .

Theorem 17. We have [Γ3(1, 2), 8] = [Γ3(1, 2), 8]ϑ and the dimension

is 5. We have [Γ4(1, 2), 8] = [Γ4(1, 2), 8]ϑ and the dimension is 7.

Proof. We omit the proof of this theorem for g = 3, since the fact
is known and the method that we use is illustrated by the g = 4 case.

We just observe that a basis of [Γ3(1, 2), 8]ϑ is given by ϑ
(3)
0 , Ξ̂

(3)
1 , Ξ̂

(3)
2 ,

Ξ(3)[0] and ϑ
(3)
6 . We make use of the commutative diagram:

[Γ4(1, 2), k]
Ψ∗

13−→ [Γ1(1, 2), k] ⊗ [Γ3(1, 2), k]

Ψ∗
112 ↓ Id⊕Ψ∗

12 ↓
Sym

(
[Γ1(1, 2), k]⊗2) ⊗ [Γ2(1, 2), k] →

(
[Γ1(1, 2), k]⊗2) ⊗ [Γ2(1, 2), k]
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A basis of [Γ4(1, 2), 8]ϑ is given by ϑ
(4)
0 , Ξ̂

(4)
1 , Ξ̂

(4)
2 , Ξ̂

(4)
3 , Ξ̂

(4)
4 , Ξ̂

(4)
5 and

ϑ
(4)
6 . From Proposition 15, the images of Ψ∗

13 are ϑ
(1)
0 ⊗ ϑ

(3)
0 , Ξ(1)[0] ⊗

ϑ
(3)
0 +ϑ

(1)
0 ⊗ Ξ̂

(3)
1 , Ξ(1)[0]⊗ Ξ̂

(3)
1 +ϑ

(1)
0 ⊗ Ξ̂

(3)
2 , Ξ(1)[0]⊗ Ξ̂

(3)
2 +ϑ

(1)
0 ⊗Ξ(3)[0],

Ξ(1)[0]⊗Ξ(3)[0], 0 and ϑ
(1)
6 ⊗ϑ

(3)
6 . These linearly dependent images span

a 6 dimensional space inside [Γ1(1, 2), 8]⊗ [Γ3(1, 2), 8]. This shows that

Ψ∗
13 [Γ4(1, 2), 8]ϑ is 6 dimensional.
On the other hand, the general element of the 15 dimensional space

[Γ1(1, 2), 8] ⊗ [Γ3(1, 2), 8] is given by

α1ϑ
(1)
0 ⊗ ϑ

(3)
0 + α2Ξ

(1)[0] ⊗ ϑ
(3)
0 + α3ϑ

(1)
6 ⊗ ϑ

(3)
0 +

β1ϑ
(1)
0 ⊗ Ξ̂

(3)
1 + β2Ξ

(1)[0] ⊗ Ξ̂
(3)
1 + β3ϑ

(1)
6 ⊗ Ξ̂

(3)
1 +

γ1ϑ
(1)
0 ⊗ Ξ̂

(3)
2 + γ2Ξ

(1)[0] ⊗ Ξ̂
(3)
2 + γ3ϑ

(1)
6 ⊗ Ξ̂

(3)
2 +

δ1ϑ
(1)
0 ⊗ Ξ(3)[0] + δ2Ξ

(1)[0] ⊗ Ξ(3)[0] + δ3ϑ
(1)
6 ⊗ Ξ(3)[0]+

ε1ϑ
(1)
0 ⊗ ϑ

(3)
6 + ε2Ξ

(1)[0] ⊗ ϑ
(3)
6 + ε3ϑ

(1)
6 ⊗ ϑ

(3)
6 .

By Proposition 15, the image of this element under Id⊕Ψ∗
12 is(

α1ϑ
(1)
0 + α2Ξ

(1)[0] + α3ϑ
(1)
6

)
⊗ ϑ

(1)
0 ⊗ ϑ

(2)
0 +(

β1ϑ
(1)
0 + β2Ξ

(1)[0] + β3ϑ
(1)
6

)
⊗

(
Ξ(1)[0] ⊗ ϑ

(2)
0 + ϑ

(1)
0 ⊗ Ξ̂

(2)
1

)
+(

γ1ϑ
(1)
0 + γ2Ξ

(1)[0] + γ3ϑ
(1)
6

)
⊗

(
Ξ(1)[0] ⊗ Ξ̂

(2)
1 + ϑ

(1)
0 ⊗ Ξ(2)[0]

)
+(

δ1ϑ
(1)
0 + δ2Ξ

(1)[0] + δ3ϑ
(1)
6

)
⊗ Ξ(1)[0] ⊗ Ξ(2)[0]+(

ε1ϑ
(1)
0 + ε2Ξ

(1)[0] + ε3ϑ
(1)
6

)
⊗ ϑ

(1)
6 ⊗ ϑ

(2)
6 .

If we demand that this image lie in Sym
(
[Γ1(1, 2), 8]⊗2)⊗ [Γ2(1, 2), 8],

it imposes certain linear equations on the coefficients. Again, ev-
ery term is a tensor of basis elements. The free parameters are α1,
δ2 and ε3. We have α2 = β1, β2 = γ1 and γ2 = δ1. We have
α3 = β3 = γ3 = δ3 = ε1 = ε2 = 0. Thus the preimage X =
(Id⊕Ψ∗

12)
−1 (

Sym
(
[Γ1(1, 2), 8]⊗2) ⊗ [Γ2(1, 2), 8]

)
is 6 dimensional in-

side [Γ1(1, 2), 8] ⊗ [Γ3(1, 2), 8]. This preimage X necessarily contains

Ψ∗
13 [Γ4(1, 2), 8]. However, since Ψ∗

13 [Γ4(1, 2), 8]ϑ is 6 dimensional we

also have Ψ∗
13 [Γ4(1, 2), 8]ϑ = X = Ψ∗

13 [Γ4(1, 2), 8].

From Ψ∗
13 [Γ4(1, 2), 8]ϑ = Ψ∗

13 [Γ4(1, 2), 8] and the knowledge of the

cusp forms, we can easily deduce [Γ4(1, 2), 8] = [Γ4(1, 2), 8]ϑ. For each

f ∈ [Γ4(1, 2), 8], there is a g ∈ [Γ4(1, 2), 8]ϑ with Ψ∗
13f = Ψ∗

13g. We have
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Ψ∗
13(f − g) = 0 so that f − g ∈ [Γ4(1, 2), 8]0. Thus f = g + α Ξ(4)[0] +

βJ (4) ∈ [Γ4(1, 2), 8]ϑ. ¤
Lemma 18. Let f ∈ [Γg(1, 2), k] be such that Φ(f), Φ(f |M) ∈ [Γg−1, k].
Then Φ (Tr(f)) = 2g−1(1 + 2g−1) Φ(f) + 22g−2 Φ(f |M).

Proof. The trace of f is given by Tr(f) =
∑

even ζ f |γζ . According

to Proposition 5, when ζ =

[
a
b

]
and the first entry of a is zero, we have

Φ(f |γζ) = Φ(f |Ma t(S)) = Φ(f)|Ma′ t(π(S)). If Φ(f) is level one then
Φ(f |γζ) = Φ(f). There are 2g−1(1+2g−1) even characteristics with the
first entry of a zero.

When the first entry of a is one, we have Φ(f |γζ) = Φ(f |Ma t(S)) =
Φ(f |M)|Mc′ t(π(S)). If Φ(f |M) is level one then Φ(f |γζ) = Φ(f |M).
There are 22g−2 even characteristics where the first entry of a is one.
Thus, Φ (Tr(f)) = 2g−1(1 + 2g−1) Φ(f) + 22g−2 Φ(f |M). ¤

Corollary 19. If Ξ̂
(4)
5 = c0J

(4), then Tr Ξ̂
(5)
5 = 16 · 17c0J

(5).

Proof. We know that Φ(Ξ̂
(5)
5 ) = Ξ̂

(4)
5 = c0J

(4) is level one. We will

show that Φ(Ξ̂
(5)
5 |M) = 0. By Proposition 15, we have Ψ∗

14Ξ̂
(5)
5 =

Ξ̂
(1)
1 ⊗ Ξ̂

(4)
4 +(62 Ξ̂

(1)
1 +ϑ

(1)
0 )⊗ c0J

(4). Using that Ξ̂
(1)
1 is a cusp form, we

have Φ(Ξ̂
(5)
5 |M) = Φ(ϑ

(1)
0 |M)c0J

(4)|M = 0 since ϑ
(1)
0 vanishes at TOC.

By Lemma 18, we have

Φ(Tr Ξ̂
(5)
5 ) = 2g−1(1 + 2g−1) Ξ̂

(4)
5 = 16 · 17c0J

(4).

So Tr Ξ̂
(5)
5 ∈ [Γ5, 8] has Φ image 16 · 17c0J

(4). Therefore, since [20],
page 216, tells us that the only cusp forms in [Γ5, 8] are trivial, we have

Tr Ξ̂
(5)
5 = 16 · 17c0J

(5). ¤
Definition 20. Let f ∈ [Γg(1, 2), k]. We say that f is a cusp form on
the Jacobian locus if for all γ ∈ Γg, Φ(f |γ) vanishes upon restriction
to the period matrices of compact Riemann surfaces.

We are ready for the Proof of Theorem 1. The map Θ(g) : V →
[Γg(1, 2), 8] is written as ϑ(g) in the standard basis and as

∑
j Ξ̂

(g)
j τ j in

the {τ j} basis so that we have equation 4. We set

Ξ(g)[0] = Ξ̂(g)
g − 17 · 89 · 227

219 · 3 · 5 · 72 · 33
J (g) ∈ [Γg(1, 2), 8].

Since the form J (g) vanishes along Jack × Jacg−k when g ≤ 5, as an
immediate consequence of Proposition 15, we get the splitting property

for Ξ̂
(g)
g and hence for Ξ(g)[0] along Jack × Jacg−k. Always according to

the same Proposition, we have that the forms Ξ̂
(g)
g are cusp forms when
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we restrict to the Jacobian locus. Hence, when g ≤ 4, their trace is
0 whenever we restrict to Jacg. The extra contribution coming from
J (g), with c = c0, is added to get property (2) along Hg. According
to Corollary 19, Ξ(5)[0] verifies property (2) along Jac5. Moreover,
Ξ(5)[0] is the unique linear combination of theta series in [Γ5(1, 2), 8]
that satisfies both properties (1) and (2). The cusp forms on Jac5 from
theta series are spanned by Ξ(5)[0] and J (5) and any Ξ(5)[0] + c J (5)

satisfies properties (1) but, since J (5) does not vanish identically on
Jac5, see [15], only Ξ(5)[0] also satisfies (2). ¤

7. Appendix: Theta series with harmonic polynomial
coefficients

A different expression for the Ξ(g)[0], when g ≤ 4, was obtained from
theta series with harmonic polynomial coefficients. We briefly recall the
results: Let X be a matrix with m rows and g columns. A harmonic
form of weight ν in the matrix variable X is a polynomial P (X) with
the properties

∀A ∈ GL(n, C), P (XA) = (detA)νP (X),

∆P =
∑
i, j

∂2

(∂Xij)2
P = 0.

It can be proved, cf. [13], page 51 or [1], that if S is a positive definite
integral unimodular quadratic form of degree m with 8 dividing m,
then the theta series

ϑ
(g)
S, P (τ) =

∑
X∈Zm, g

P (S1/2X) e(1/2 · tr(S[X]τ))

is a modular form of weight m/2 + ν relative to Γg(1, 2). It is a cusp
form if ν > 0. Moreover, if S is also even then we get a modular form
relative to Γg.

A simple way to construct harmonic polynomials is the following: let
L be a m × g matrix with L′L = 0 and L′L > 0, then, for ν ∈ Z≥0,

Pν(X) = det(L′X)ν

is a harmonic polynomial of degree ν. Here L is the conjugate of L and
necessarily m ≥ 2g.

For m = 8, ν = 4, k = 8, S = Ig or E8 and for g = 1, 2, 3, 4 we
choose L of the form L′ =

(
1g 0 i1g 0

)
.

Proposition 21. Let m = 8 and ν = 4, then
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1. The theta series ϑ
(g)
E8, P4

vanish when g = 1, 2, 3 and, up to a nonzero
multiplicative constant, is equal to J when g = 4.

2. The theta series ϑ
(g)
18, P4

do not vanish when g = 1, 2, 3, 4.

Proof. In [23] and [26] the non-vanishing of ϑ
(4)
E8, P4

has been proved.
The vanishing of the other cases is a consequence of the general fact that
there are no level one cusp forms of weight 8 when g ≤ 3. About the
second statement, we observe that the nonvanishing is the consequence
of a simple computation, since in all these cases, we have a(1

2
1g) 6= 0

for the Fourier coefficients of 1
2
1g. In fact

a(1
2
1g) =

∑
X∈Zm, g : X′X=1g

det(L′X)4.

For such X it is easy to check that det(L′X) is 0 or a fourth root of
unity. Since there exist X such that the previous determinant is not
zero, we get a(1

2
1g) 6= 0. ¤
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