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Abstract

The purpose of this paper is to investigate the finite group which ap-
pears in the study of the Type II Z4-codes. To be precise, it is character-
ized in terms of generators and relations, and we determine the structure
of the centralizer algebras of the tensor representations of this group.

1 Introduction

This is a continuation of the paper [7] in which the centralizer algebras of the
tensor representations of the specified finite group are investigated. This group
is closely connected to the Type II binary codes. The group to be investigated
in this paper appears in the study of the Type II Z4-codes.

A problem dealt with in this paper is simple and quite natural. The theory
of codes over Z4 has attracted great interest since around 1990 (cf. [6], [2], [1]
and the references cited there). Let Z4 = {0, 1, 2, 3} be the residue ring of the
rational integers modulo 4. We take a Z4-code C of length n, that is, an additive
subgroup of Zn

4 . It is said to be Type II if

C = {u ∈ Zn
4 : (u, v) =

∑
i

uivi ≡ 0 (mod 4), ∀v ∈ C}

and
(v, v) ≡ 0 (mod 8), ∀v ∈ C.

The complete weight enumerator of C is

WC(x, y, z, w) =
∑
v∈C

xwt0(v)ywt1(v)zwt2(v)wwt3(v)

where wta(v) = ♯{i : vi = a} for v = (v1, v2, . . . , vn). In view of the relation with
the theory of modular forms, the following type of invariants is more appropriate
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for our purpose (cf. [10], [1], [3], [8]). The symmetrized weight enumerator of
C is defined as

SC(x, y, z) = WC(x, y, z, y).

Next we shall describe the relation between SC(x, y, z) and the invariant theory
of the finite group.

Let η =
1 + i√

2
be a primitive 8-th root of unity and G a group generated by

D = diag(1, η,−1) and

T =
η

2

1 2 1
1 0 −1
1 −2 1

 .

The group G of order 384 natually acts on the polynomial ring C[x, y, z] of three
variables over the complex number field C: for f ∈ C[x, y, z] and

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 ∈ G

we have

Af(x, y, z) = f(a11x+ a12y + a13z, a21x+ a22y + a23z, a31x+ a32y + a33z).

Under this action we consider

C[x, y, z]G = {f ∈ C[x, y, z] : Af = f for any A ∈ G},

the invariant ring of G. It is easy to see that for a Type II Z4-code C the group
G keeps the symmetrized weight enumerator SC(x, y, z) stable. A remarkable
fact is that the symmetrized weight enumerators are enough for the invariants
of degrees multiple of 8. To be precise, let G̃ be the group generated by T , D
and diag(η, η, η). Then G̃ is of order 768 and the invariant ring C[x, y, z]G̃ can
be generated by the symmetrized weight enumerators of Type II Z4-codes ([2]).
This implies that if we want to know the structure of the ring of some weight
enumerators, then we have to know the invariant polynomial ring of some group
in detail. This kind of fact, originally begun with Gleason [4], is one of the most
fascinating theorems in coding theory, see [9].

On the other hand, as for the invariant theory we have a famous book [11]
by H. Weyl which intensively studied the invariant theory as well as the repre-
sentation theory. The commutator algebra plays an important role in the argu-
ments of this book. We apply this philosophy to the group G. Let us consider
the following situation: G acts on covariant vectors y(1), . . . , y(k) cogrediently
and on contravariant vectors ξ(1), . . . , ξ(k) contragradiently. Then the matrices
B = (b(i1 · · · ik; j1 · · · jk)) of the coefficients of the invariant forms∑

i;j

b(i1 · · · ik; j1 · · · jk)ξ(1)i1
· · · ξ(k)ik

y
(1)
j1

· · · y(k)jk
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ofG form the commutator algebra of the k-th tensor representation ofG. Among
other results, we explicitely determine this algebra.

We organize this paper as follows. First in Section 2 we give a presentation
of G by generators and relations. To determine the centralizer algebras, it
is enough to consider the projective group PG = G/Z(G), the coset group
by the center. We give the presentaion of PG in Section 3. In Section 4,
we afford a complete set of irreducible representations of PG. By Schur-Weyl
duality, the multiplicities of the irreducible representations in the tensor space,
determine the structure of the centralizer algebra. So we decompose the tensor
representation of PG into irreducible ones in Section 5. Finally in Section 6,
we give the structure of the centralizer algebras of the tensor representations of
PG.

2 Characterization

Let G be the group introduced in Section 1. We note that T 2 = diag(i, i, i)
(and hence T 2, T 4 and T 6) is in the center of G. We also note that both D and
T have order 8 and that they satisfy the following relations:

T DT = D7T 3D7, T D5T = D3T 7D3.

We show that actually these relations determine the group G, that is,

Theorem 2.1. Let G be the group generated by the symbols D and T which
obey the following relations:

D8 = 1, (R1)

T 8 = 1, (R2)

T 2D = DT 2, (R3)

TDT = D7T 3D7, (R4)

TD5T = D3T 7D3. (R5)

Then each element of G can be written in exactly one of the following forms:

1 (W1)

Dn1 , (W2)

Tn2 , (W3)

Dn3Tn4 , (W4)

T p1Dn5 , (W5)

Dn6T p2Dn7 , (W6)

TDe1T p3 , (W7)

Dn8TDe2T p2 . (W8)

Here n1, . . . , n8 ∈ {1, 2, . . . , 7}, p1, p2, p3 ∈ {1, 3, 5, 7} and e1, e2 ∈ {2, 4, 6}. In
particular the order of G is 384.
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Before proving the theorem above, we shall show

Lemma 2.2. We have

TD3T = D5T 5D5, (R6)

TD7T = DTD, (R7)

D2iTD2jT = TD2jTD2i, 2i, 2j ∈ {2, 4, 6}. (R8)

Proof. From the relation (R5) we have

TD5T = D3T 7D3 ⇔ TD5 = D3T 7D3T 7 ⇔ D5TD5 = T 7D3T 7 = TD3T 5.

Multiplying T 4 from the right, we have D5T 5D5 = TD3T .
From the relation (R4) we have

TDT = D7T 3D7 ⇔ TD = D7T 3D7T 7 = D7TD7T ⇔ DTD = TD7T.

Finally we show (R8). For the case 2i = 2, we have

D2TD2T = D ·DTD ·DT = D · TD7T ·DT = DTD ·D6 · TDT

= TD7T ·D6 ·D7T 3D7

= TD7T ·D13 · T 3D7

= TD7 · TD5T · T 2D7

= TD7 ·D3T 7D3 · T 2D7

= TD10T 7T 2D3D7

= TD2TD2,

D2TD4T = D ·DTD ·D3T = D · TD7T ·D3T = DTD ·D6 · TD3T

= TD7T ·D6 ·D5T 5D5

= TD7T ·D11 · T 5D5

= TD7 · TD3T · T 4D5

= TD7 ·D5T 5D5 · T 4D5

= TD12T 5T 4D5D5

= TD4TD2

and

D2TD6T = D ·DTD ·D5T = D · TD7T ·D5T = DTD ·D6 · TD5T

= TD7T ·D6 ·D3T 7D3

= TD7T ·D9 · T 7D3

= TD7 · TDT · T 6D3

= TD7 ·D7T 3D7 · T 6D3
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= TD14T 3T 6D7D3

= TD6TD2.

For 2i = 4, we utilize the case 2i = 2 as follows.

D4TD2T = D2 ·D2TD2T = D2 · TD2TD2 = D2TD2T ·D2 = TD2TD2 ·D2

= TD2TD4.

Similarly for 2i = 6, we utilize the case 2i = 4 and we can obtain the remaining
relations.

Remark 2.3. 1) Because of (R3), we find that Tn is in the center of G if n is
even.

2) The initial relations (R4), (R5) and the relations (R6), (R7) above show
that

TDoddT = DoddToddDodd.

Also we have
TDodd = DoddToddDoddTodd.

Proof of Theorem 2.1. Suppose that w ∈ G is written in one of the forms (W1)-
(W8). We show that all the left and the right multiplications by the letters D
and T are again written in one of the forms (W1)-(W8).

Case 1. The word in the form (W1) is the identity. It is obvious that the
left and the right multiplications by D and T are written in the form (W2) and
(W3) respectively.

Case 2. Let w = Dn1 . Then Dw = wD = Dn1+1 is in the form (W2) or
(W1). The left T -action Tw = TDn1 is in the form (W5) and the right T -action
wT = Dn1T is in the form (W4).

Case 3. Let w = Tn2 . Then the left D-action Dw = DTn2 is in the form
(W4). The right D-action wD = Tn2D is in the form (W5) if n2 is odd, and
Tn2D = DTn2 is in the form (W4) if n2 is even. The left and the right T -actions
Tw = wT = Tn2+1 is in the form (W3) or (W1).

Case 4. Let w = Dn3Tn4 . Then the left D-action Dw = Dn3+1Tn4 is in
the form (W4). The right D-action wD = Dn3Tn4D is in the form (W6) if n4 is
odd. If n4 is even, then Dn3Tn4D = Dn3DTn4 . This is in the form (W4). Next
consider the left T -action. If n4 is even, then Tw = TDn3Tn4 = TTn4Dn3 .
This is in the form (W5). So we assume that n4 is odd. If n3 is even, then
TDn3Tn4 is in the form (W7). If n3 is odd, then

TDn3Tn4 = TDn3T ·T even = DoddToddDoddT even = DoddToddT evenDodd.

This is in the form (W6). If n3 is even and n4 is odd, then TDn3Tn4 is in the
form (W7). The right T -action wT = Dn3Tn4T is in the form (W4).

Case 5. Let w = T p1Dn5 . The left D-action Dw = DT p1Dn5 is in the form
(W6) and the right D-action wD = T p1Dn5D is in the form (W5). The left
T -action Tw = TT p1Dn5 = T p1+1Dn5 = Dn5T p1+1. This is in the form (W4).
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Consider the right T -action wT = T p1Dn5T . If n5 is even, this is in the form
(W7). If n5 is odd, then

T p1Dn5T = T p1−1·TDn5T = T p1−1·DoddToddDodd = DoddT p1−1ToddDodd.

This is in the form (W3) or (W6).
Case 6. Let w = Dn6T p2Dn7 . Obviously, both the left and the right D-

actions are in the form (W6). Consider the the left T -action Tw = TDn6T p2Dn7 .
If both Dn6 and Dn7 are even, then by (R8),

TDn6T p2Dn7 = TDn6TT p2−1Dn7 = TDn6TDn7 · T p2−1 = Dn6TDn7T · T p2−1

= Dn6TDn7T p2 .

This is in the form (W8). If n6 is odd, then

TDn6T p2Dn7 = TDn6T · T p2−1Dn7 = DoddToddDoddT · T p2−1Dn7

= DoddToddT p2−1DoddT ·Dn7 .

This is in the form (W6). If n6 is even and n7 is odd, then we have

TDn6T p2Dn7 = TDn6TT p2−1Dn7 (1)

= TDn6 · TDn7 · T p2−1

= TDn6 ·DoddToddDoddTodd · T p2−1

= TDn6DoddT · Todd−1DoddToddT p2−1

= DoddToddDodd ·DoddTodd−1ToddT p2−1

= DoddTTodd−1DoddDoddTodd−1ToddT p2−1

= DoddTDoddDoddTodd−1Todd−1ToddT p2−1.

This is in the form (W8). Consider the right T -action wT = Dn6T p2Dn7T . If n7

is even, then we have Dn6T p2Dn7T = Dn6T · T p2−1Dn7T = Dn6TDn7T p2−1T .
This is in the form (W8). If n7 is odd, then we have Dn6T p2Dn7T = Dn6T p2−1 ·
TDn7T = Dn6T p2−1DoddToddDodd = Dn6DoddT p2−1ToddDodd. This is in
the form (W6).

Case 7. Let w = TDe1T p3 . The left D-action Dw = DTDe1T p3 is in the
form (W8). Consider the right D-action wD = TDe1T p3D. We have already
considered this case in the equation (1). The left T -action Tw = TTDe1T p3 =
De1T p3+2 is in the form (W4). The right T -action wT = TDe1T p3T = TDe1T p3+1 =
TT p3+1De1 is in the form (W5).

Case 8. Finally, consider the case w = Dn8TDe2T p4 . The left D-action
Dw = DDn8TDe2T p4 is obviously in the form (W8). Consider the right D-
action wD = Dn8TDe2T p4D. As we have seen in the equation (1), TDe2T p4D
is in the form (W8). So is Dn8 · TDe2T p4D. Consider the left T -action Tw =
TDn8TDe2T p4 . If n8 is even, then we have

TDn8TDe2 · T p4 = De2TDn8T · T p4 = De2TDn8T p4+1 = De2TT p4+1Dn8 .
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This is in the form (W6). If n8 is odd, then we have

TDn8T ·De2T p4 = DoddToddDodd ·De2T p4 = DoddTTodd−1DoddDe2T p4

= DoddTDoddDe2Todd−1T p4 .

This is in the form (W8). Finally consider the right T -action wT = Dn8TDe2T p4T =
Dn8TDe2T p4+1 = Dn8TT p4+1De2 . This is in the form (W6).

Hence we found that under the relations (R1)-(R5), all possible words in the
alphabet {D,T} are written in the forms (W1)-(W8).

Consider the map ι from G to G defined by D 7→ D and T 7→ T . This is
a well-defined group homomorphism, since G respects the relations (R1)-(R5).
This ι is surjective from the definition. It easy to check that all images of the
words (W1)-(W8) are distinct. Hence ι is a group isomorphism.

By the derived isomorphism in the course of the proof above, we identify G
with G.

3 Projective Group

Let Z be the center of G. Our objective is to analyze the structure of the
centralizer algebra EndG(V

⊗k) of G in the tensor space. Since the center Z of
G does not affect the structure of the centralizer, in the following, we have only
to consider the projective group PG = G/Z of G.

It is easy to see that Z = {1, T 2, T 4, T 6}. By the definition above, PG is
generated by D̄ = DZ and T̄ = TZ. By the similar argument in the previous
section we find the defining relations and all words of PG.

Theorem 3.1. PG = G/Z has the following presentation:
generators:

D̄, T̄

and relations

D̄
8
= 1, T̄

2
= 1, T̄ D̄T̄ = D̄

7
T̄ D̄

7
, T̄ D̄

5
T̄ = D̄

3
T̄ D̄

3
. (R0’)

Further, each element in PG can be written in exactly one of the following
forms.

1̄, D̄
n1 , T̄ , D̄

n1 T̄ , T̄ D̄
n2 , D̄

n3 T̄ D̄
n4 , T̄ D̄

e1 T̄ , D̄
n5 T̄ D̄

e2 T̄ . (2)

Here n1, . . . , n5 ∈ {1, 2, . . . , 7}, and e1, e2 ∈ {2, 4, 6}.

Further, we can find that PG is divided into 10 conjugacy classes C1,C2, . . . ,C10,
each of which is represented by

1̄, D̄, D̄
2
, D̄

3
, D̄

4
, D̄

6
, T̄ , D̄T̄ , D̄

4
T̄ , D̄

2
T̄ D̄

4
T̄ .
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4 The irreducible representations and the char-
acter table

In this section, we will find all the irreducible representations of PG and its
character table. First we note that if we put D̄ = ηD and T̄ = η3T , then D̄
and T̄ satisfy the relations (R0’). In other words, the following map ρ7 affords
a representation of PG:

ρ7(D̄) = ηD = diag(η, i,−η), ρ7(T̄ ) = η3T =
−1

2

1 2 1
1 0 −1
1 −2 1

 .

We find the complex conjugate ρ6(D̄) = ρ̄7(D̄) = diag(η7,−i, η3) and ρ6(T̄ ) =
ρ̄7(T̄ ) = ρ7(T̄ ) also afford an irreducible representation of PG. Moreover, the
relations (R0’) preserve the parity of the number of generators, we find that
ρ2(D̄) = ρ2(T̄ ) = −1 afford a 1-dimensional representation other than a trivial
representation ρ1. Hence we have further two 3-dimensional irreducible repre-
sentations, ρ8 = ρ2 ⊗ ρ7 and ρ9 = ρ2 ⊗ ρ6.

Next we consider ρ7 ⊗ ρ7 and ρ7 ⊗ ρ6. Let ⟨ei ⊗ e′j | i, j = 1, 2, 3⟩ be a basis
of V7 ⊗ V7 (resp. V7 ⊗ V6). Then we have the following representation matrices
of D̄ and T̄ respectively:

ρ7 ⊗ ρ7(D̄) = diag(i, η3,−i, η3,−1, η7,−i, η7, i)

(resp.ρ7 ⊗ ρ6(D̄) = diag(1, η7,−1, η, 1, η5,−1, η3, 1)),

ρ7 ⊗ ρ7(T̄ ) = ρ7 ⊗ ρ6(T̄ )

=
1
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1 2 1 2 4 2 1 2 1
1 0 −1 2 0 −2 1 0 −1
1 −2 1 2 −4 2 1 −2 1
1 2 1 0 0 0 −1 −2 −1
1 0 −1 0 0 0 −1 0 1
1 −2 1 0 0 0 −1 2 −1
1 2 1 −2 −4 −2 1 2 1
1 0 −1 −2 0 2 1 0 −1
1 −2 1 −2 4 −2 1 −2 1


.

If we put v1 = e1 ⊗ e′1 + e3 ⊗ e′3, v2 = e1 ⊗ e′3 + e3 ⊗ e′1 and v3 = e2 ⊗ e′2,
then we find V4 = ⟨v1,v2,v3⟩ is ρ⊗2

7 (T̄ )-invariant as well as ρ⊗2
7 (D̄)-invariant.

Indeed, if we put ρ4 = ρ⊗2
7 |V4 , then we have

ρ4(T̄ )(v1,v2,v3) = (v1,v2,v3)
1

2

1 1 2
1 1 −2
1 −1 0


and

ρ4(D̄)(v1,v2,v3) = (v1,v2,v3)diag(i,−i,−1).
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Note that no eigenvector of ρ4(D̄) is ρ4(T̄ )-invariant. This implies that (ρ4, V4)
defines an irreducible representation of PG. Hence ρ5 = ρ4 ⊗ ρ2 also defines an
irreducible representation.

Next we put V3 = ⟨v4,v5⟩, where v4 = 2e1 ⊗ e′3 + 2e3 ⊗ e′1 and

v5 = e1 ⊗ e′1 + e3 ⊗ e′3 − e1 ⊗ e′3 − e3 ⊗ e′1 − e2 ⊗ e′2.

Then ρ3 = ρ7 ⊗ ρ6|V3 defines an irreducible representation of degree 2. The
representation matrices with respect to this basis are

ρ3(D̄)(v4,v5) = (v4,v5)

(
−1 1
0 1

)
, ρ3(T̄ )(v4,v5) = (v4,v5)

(
1 0
1 −1

)
.

It is easy to check that this representation is irreducible.
So far, we have got 9 irreducible representations of PG. The square sum of

the dimensions of these irreducible representations is

12 + 12 + 22 + 32 + 32 + 32 + 32 + 32 + 32 = 60.

Since PG is of order 96 and has 10 conjugacy classes, there must be one more
irreducible representation (ρ10, V10) of degree 6. Although we have not yet
obtained the final representation, if we use the orthogonality of the characters
we can find χ10, the character of ρ10, and obtain the character table of PG as
follows.

PG C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

1̄ D̄ D̄
2

D̄
3

D̄
4

D̄
6

T̄ D̄T̄ D̄
4
T̄ D̄

2
T̄ D̄

4
T̄

order 1 8 4 8 2 4 2 3 4 4
size 1 12 3 12 3 3 12 32 12 6
χ1 1 1 1 1 1 1 1 1 1 1
χ2 1 −1 1 −1 1 1 −1 1 −1 1
χ3 2 0 2 0 2 2 0 −1 0 2
χ4 3 −1 −1 −1 3 −1 1 0 1 −1
χ5 3 1 −1 1 3 −1 −1 0 −1 −1
χ6 3 −i a i −1 b −1 0 1 1
χ7 3 i b −i −1 a −1 0 1 1
χ8 3 −i b i −1 a 1 0 −1 1
χ9 3 i a −i −1 b 1 0 −1 1
χ10 6 0 2 0 −2 2 0 0 0 −2

Here a = −1− 2i and b = −1 + 2i.
Now we go back to the representation ρ7 ⊗ ρ6. If we put

V10 = ⟨w3 = e1 ⊗ e′1 − e3 ⊗ e′3,w4 = e1 ⊗ e′3 − e3 ⊗ e′1,

w5 = e1 ⊗ e′2,w6 = e2 ⊗ e′1,w7 = e2 ⊗ e′3,w8 = e3 ⊗ e′2⟩,
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then V10 is both T̄ -invariant and D̄-invariant. Hence V10 defines a representation
ρ and we have

ρ(T̄ )(w3, . . . ,w8) = (w3, . . . ,w8)
1

2


0 0 1 1 1 1
0 0 −1 1 1 −1
1 −1 0 1 −1 0
1 1 1 0 0 −1
1 1 −1 0 0 1
1 −1 0 −1 1 0


and

ρ(D̄)(w3, . . . ,w8) = diag(1,−1, η7, η, η5, η3).

Since every character value of ρ at each conjugacy class coincides with that of
χ10 of the character table of PG, ρ = ρ10 gives the irreducible representation
and we have thus obtained a complete set of representatives of the irreducible
representations.

5 Decomposition of tensor representations

In the previous section, we have found the complete set of representatives of all
irreducible representations of PG. In this section, we examine how the tensor
powers of ρ7 are decomposed into irreducible ones.

We follow the argument presented in the paper [7]. Let χ1, . . . , χ10 be the
complete set of all irreducible characters of the group PG. Now suppose that
we have a character

χ = m1χ1 +m2χ2 + · · ·+m10χ10,

which has a value ki at each conjugacy class Ci, i = 1, 2, . . . , 10. Let X denote
the matrix of the character table of PG, then we have

(m1, . . . ,m10) = (k1, . . . , k10)X
−1. (3)

In order to examine the structure of the centralizer algebra of ρ⊗k
7 , the tensor

power of the natural representation ρ7, we decompose it into the irreducible ones.
For this, we need to decompose ρ7 ⊗ ρi (i = 1, 2, . . . , 10) one by one.

By the argument and/or the character table in the previous section, we
already have the following:

χ7 · χ1 = χ7,

χ7 · χ2 = χ8.

Using the equation (3), further we have

χ7 · χ3 = χ7 + χ8,

χ7 · χ4 = χ6 + χ10,
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χ7 · χ5 = χ9 + χ10,

χ7 · χ6 = χ1 + χ3 + χ10,

χ7 · χ7 = χ4 + χ6 + χ9,

χ7 · χ8 = χ5 + χ6 + χ9,

χ7 · χ9 = χ2 + χ3 + χ10,

χ7 · χ10 = χ4 + χ5 + χ7 + χ8 + χ10.

For example, we take up the χ7 · χ10 case. It is easy to compute

χ7 · χ10(C1, . . . ,C10) = (18, 0,−2 + 4i, 0, 2,−2− 4i, 0, 0, 0,−2).

Then we compute

(18, 0,−2 + 4i, 0, 2,−2− 4i, 0, 0, 0,−2)X−1 = (0, 0, 0, 1, 1, 0, 1, 1, 0, 1)

and this means, due to the identity (3),

χ7 · χ10 = χ4 + χ5 + χ7 + χ8 + χ10.

By the above calculation, we obtain the Bratteli diagram of the decompo-
sition of ρ⊗k

7 into irreducible ones. (For the Bratteli diagram, see for example
Goodman-de la Harpe-Jones [5], §2.3.) Accordingly, the square sum of the mul-
tiplicities on the k-th row is the dimension of EndPG(V

⊗k
7 ).

square sum

ρ1, 1 1

ρ7, 1 1

ρ4, 1 ρ6, 1 ρ9, 1 3

ρ1, 1 ρ2, 1 ρ3, 2 ρ6, 1 ρ10, 3 16

ρ1, 1 ρ3, 1 ρ4, 3 ρ5, 3 ρ7, 6 ρ8, 6 ρ10, 4 108

ρ4, 10 ρ5, 10 ρ6, 15 ρ7, 6 ρ8, 5 ρ9, 15 ρ10, 10 811
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6 Centralizer algebra

In the previous section, we have seen that the dimensions of Ak = EndPG(V
⊗k
7 )

(k = 0, 1, 2, . . . , 5) are 1, 1, 3, 16, 108, 811. The number of paths from the top
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vertex to the bottom vertices on the Hasse diagram will be calculated using the
adjacent matrix of the diagram. To be explicit, the formulae

χ7(Cj) · χi(Cj) =
10∑
k=1

mikχk(Cj), i, j = 1, 2, . . . , 10

obtained in the previous section lead to

Xdiag(χ7(C1), . . . , χ7(C10)) = AX

or
Xdiag(χ7(C1), . . . , χ7(C10))X

−1 = A (4)

where

A =



0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 0 0 1 1
1 0 1 0 0 0 0 0 0 1
0 0 0 1 0 1 0 0 1 0
0 0 0 0 1 1 0 0 1 0
0 1 1 0 0 0 0 0 0 1
0 0 0 1 1 0 1 1 0 1


.

Let d1(k), . . . , d10(k) be the number of paths at the bottom (the k-th floor)
vertices of the Hasse diagram. Here k starts from 0 and the floor on which the
first ρ1 lies is the 0-th floor. Then the dℓ(k)’s are equal to the multiplicities of
the irreducible components of PG in End(V ⊗k

7 ):

χk
7 = d1(k)χ1 + d2(k)χ2 + · · ·+ d10(k)χ10.

It is easy to see

(d1(k), . . . , d10(k)) = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0)Ak (k ≥ 0).

By the relation (4), however, they are calculated by the character table X of
PG as follows.

(d1(k), . . . , d10(k)) = (1, 0, . . . , 0)Xdiag(χ7(C1)
k, . . . , χ7(C10)

k)X−1.

Hence we have for k ≥ 1

d1(k) =
3k

96
+

ak

32
+

bk

32
+

5 · (−1)k

32
+

3

16
+

ik

8
+

(−i)k

8
,

d2(k) =
3k

96
+

ak

32
+

bk

32
− 3 · (−1)k

32
− 1

16
− ik

8
− (−i)k

8
,

d3(k) =
3k

48
+

ak

16
+

bk

16
+

(−1)k

16
+

1

8
,
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d4(k) =
3k

32
− ak

32
− bk

32
+

7 · (−1)k

32
+

1

16
− ik

8
− (−i)k

8
,

d5(k) =
3k

32
− ak

32
− bk

32
− (−1)k

32
− 3

16
+

ik

8
+

(−i)k

8
,

d6(k) =
3k

32
+

a · ak

32
+

b · bk

32
− 5 · (−1)k

32
+

3

16
+

i · ik

8
− i · (−i)k

8
,

d7(k) =
3k

32
+

b · ak

32
+

a · bk

32
− 5 · (−1)k

32
+

3

16
− i · ik

8
+

i · (−i)k

8
,

d8(k) =
3k

32
+

b · ak

32
+

a · bk

32
+

3 · (−1)k

32
− 1

16
+

i · ik

8
− i · (−i)k

8
,

d9(k) =
3k

32
+

a · ak

32
+

b · bk

32
+

3 · (−1)k

32
− 1

16
− i · ik

8
+

i · (−i)k

8
,

d10(k) =
3k

16
+

ak

16
+

bk

16
− (−1)k

16
− 1

8
.

Here a = −1 − 2i and b = −1 + 2i. We shall summarize our results in the
following way.

Theorem 6.1. Let Ak = EndPG(V
⊗k
7 ) be a centralizer algebra of PG in V ⊗k

7 ,
where PG acts on V ⊗k

7 diagonally. Then Ak has the following multi-matrix
structure:

Ak
∼=

{
C (k = 0),⊕10

ℓ=1 Mdℓ(k)(C) (k ≥ 1)

in which the dℓ(k)’s are explicitly determined above.

Calculating the square sum of the dimensions of the simple components of
Ak we finally derive the following

Corollary 6.2. We have

dimAk =

1 (k = 0),

57 + 6 · 5k + 9k

96
(k ≥ 1).

We conclude this paper with a small table of the values dimAk.

k 0 1 2 3 4 5 6 7 8 9
dimAk 1 1 3 16 108 811 6513 54706 472818 4157701
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Solé, P., The Z4-linearity of Kerdock, Preparata, Goethals, and related
codes, IEEE Trans. Inform. Theory 40 (1994), no. 2, 301-319.

[7] Kosuda, M. and Oura, M., On the centralizer algebras of the primitive
unitary reflection group of order 96, arxiv.org/abs/1505.00318, accepted
for publication in Tokyo J. Math.

[8] Motomura, T. and Oura, M., E-polynomials associated to Z4-codes, ac-
cepted for publication in Hokkaido Math. J.

[9] Nebe, G., Rains, E. M., Sloane, N. J. A., Self-dual codes and invariant
theory, Algorithms and Computation in Mathematics, 17. Springer-Verlag,
Berlin, 2006.

[10] Runge, B., Theta functions and Siegel-Jacobi forms, Acta Math. 175 (1995),
no. 2, 165-196.

[11] Weyl, H., The Classical Groups. Their Invariants and Representations.
Princeton University Press, Princeton, N. J., 1939.

Department of Mathematical Sciences, University of the Ryukyus,
Okinawa, 903-0213, Japan

E-mail address: kosuda@math.u-ryukyu.ac.jp

Graduate School of Natural Science and Technology, Kanazawa
University, Ishikawa, 920-1192 Japan

E-mail address: oura@se.kanazawa-u.ac.jp

14


