THE TERWILLIGER ALGEBRAS OF THE
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ABSTRACT. Terwilliger proposed a method for studying commutative association
schemes by introducing a non-commutative, semi-simple C-algebra, whose struc-
ture reflects the combinatorial nature of the corresponding scheme, and applied the
method to the P and @ polynomial schemes. In this paper, we continue the initial
investigation of Bannai and Munemasa of the Terwilliger algebras of group associa-
tion schemes. In particular, we determine the structure of the Terwilliger algebras
for the group schemes of S5 and As.

§ 1. Introduction

Terwilliger algebras were introduced in [7] as a method for studying commuta-
tive association schemes. The structure of these algebras reflect the combinatorial
nature of the corresponding schemes. Terwilliger’s method proved very effective in
studying schemes with many vanishing intersection numbers and Krein parameters,
in particular, the P and ) polynomial schemes and their relatives.

In this paper, we determine the structure of the Terwilliger algebras of the group
association schemes of S5 and As. We first recall some important definitions and
refer the reader to [6], [7], and [8] for details on general Terwilliger algebras and to
[1] for association schemes.

Definition 1. Let G be a finite group. Let Cy, Cq, ... ,C4 be the conjugacy classes
of G. Define the relations R;(i =0,1,...,d) on G by

(z,y) € Ry & yz~ ' € C.

Then X(G) = (G, {Ri}o<i<d) is a commutative association scheme of class d called
the group association scheme of G.

Let Ag, Ay, ..., Ay denote the adjacency matrices of the relations of the scheme.
Then

d
Aid; = prjAk
k=0

and these matrices form a basis for the Bose-Mesner algebra 2, a semi-simple
subalgebra of Mats(C). The intersection numbers pfj of the group association
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scheme X(G) are given by pf; = [{(z,y) € C; x Cj|zy = 2, for a fixed z € Cy}|.
The algebra 2l has a second basis Ey, F1, ..., E4 of primitive idempotents, and

d
1
FE; E:—§j B,
ST el g

where o denotes Hadamard (entry-wise) multiplication. The non-negative real num-
bers qu are called the Krein parameters.

For each i =0,1,...,d, let E} and A} be the diagonal matrices of size |G| x |G|
defined respectively by

(Ei)ae = {o i orec, @EC)
(A)z2 = |G|(Ei)es (x€ G, e=identity ofG).
Then A* = (Ej,...,E}) = (A§, ..., A}) is a commutative, semi-simple subalge-

bra of Mats(C) called the dual Bose-Mesner subalgebra of X(G).

Definition 2. The Terwilliger algebra T(G) of the group scheme X(G) is the
subalgebra of Matg(C) generated by 21 and 2*.

The algebra T(G) = (A, A*) = (4;,EF| 0 < i < d) is non-commutative and
semi-simple (it is closed under the conjugate-transpose map). It is of natural inter-
est to determine the combinatorial and group-theoretical properties of T'(G) such
as its dimension, and its irreducible complex representations, which Bannai and
Munemasa have initiated in [2].

In this paper, we determine the dimensions of T'(S5) and T'(As), obtain explicitly

complete sets of primitive central idempotents, and as our main result, determine
the following Wedderburn decompositions:

T(S5)%Ml@/\/h@M3@M3@M5@M5@M6®M7a

and

T(A5)%M1@M2@M3€BM3EBM5EBM5,

where M; denotes the full matrix algebra over C of degree 1.
§2. Preliminaries

In this section we collect key results in [2] and [6]. Background information on
groups and their representations can be found in standard references like [3] and
[5]. For the rest of the paper we assume the notation of the previous section unless
otherwise stated. We will write 1" to indicate general Terwilliger algebras.

The intersection numbers provide some information about the structure of the
Terwilliger algebra. The following relations in 7' were found by Terwilliger ([6,
Lemma 3.2)):

EfA;E; =0 iff pf;=0 (0<4,jk<d)
0

EiA5E, =0 iff ¢f =0 (0<4,j,k<d).
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For T'(G), EfA;E} is the (0,1)-matrix of size |G| x |G| with rows and columns
indexed by the elements of G arranged by conjugacy classes, and whose (C;, Cy)
block (rows indexed by elements of C; and columns by Cj) is identical to the

(Ci, Ok) block of Aj.

We now review some results of Bannai and Munemasa in [2]. Define T}, and T}
to be the linear span of the E}A;E} and E;AjEy, (0 < i,j,k < d), respectively.
Then the dimensions of 7, and 7} equal the number of nonvanishing pfj and qu,

respectively. Furthermore,
T = (To) = (17).

For the intersection numbers of the group scheme X(G), the following is well known:

ko |GG T X (i) x (ug) x(uk)
Y |G| x(1)
x€Irr(G)

An analogous formula holds for ¢f; (see ([1]).

Now consider the action of G on itself via conjugation. Let O be the totality
of G-orbits in G x G (under component-wise action). Then denote by T' = T(G)
the centralizer algebra of the permutation representation of G affording (G, O). (In
the language of D. Higman [4], (G, O) is a coherent configuration of degree |G| and
rank |O|.). The adjacency matrices of the graphs (G, 0;), where O; € O, is a basis
of T(G). Then since A; € T and E? € T, for all i, we have

7(G) cT.

The dimension of T which is the rank of the configuration (G, @) can then be com-
puted using group theory. Hence we have the following bounds for the dimension

of T(G):

Proposition 1. Let T(G) be the Terwilliger algebra of the group association
scheme of G. Then:

d
{6, 5, k) |9l # 0,0 <dy g,k < d} | <dimT(G) <Y |Calu),
=0

where the u;, (i =0,1,...,d) is a set of representatives for the conjugacy classes of
G and Cg(u;) is the centralizer in G of u;.

Note. We also have | {(i, j, k) | qu #0,0 <i,j,k<d}| <dimT(G).

Remarks. 1. In general, these dimensions do not coincide. But there are many
groups for which dim T, = dimT (see [2]). For example, all abelian groups and all
dihedral groups. Also, if G; and G5 are groups satisfying the above condition, then
so does G1 x Ga.

2. We also mention another interesting result in [2]. First, we state a definition.
Let X = (X,{R;}) be a commutative association scheme, and let R;(z) = {y €
X | (z,y) € R;}. The scheme X is called triply regular if the size of the set R;(x)N
R;(y)NRy(z) depends only on the set {4, j, k, 1, m,n} where (x,y) € Ry, (z,2) € Ry,
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and (y,z) € R,. Then Munemasa proves that X is triply regular if and only if
T="T,.

3. The observations above yield the following information: (i) for S3: dimT, =
dimT = dimT = 11; (i) for Ay: dimT, = dimTF = dimT = 19; and (iii) for
Syt dimT) = dimT = dimT = 43. In this paper, we study the groups S5 and
As, which provide the first “non-trivial” cases for the family of symmetric and
alternating groups.

63. The algebra T

In this section we examine the algebra T in more detail. Since T is a semisimple

algebra, we have T=aT €;, where the &; are primitive central idempotents (&;2 =

g; # 0), given by (see [5, Chapter II, § 1)):

f= NS N (e 1rr(6)

| geG

Here, g — g* is the permutation representation given by (¢*)z,y = (dg-124.4)e.y-
Each minimal two-sided ideal T'¢; is isomorphic to a full matrix algebra.

The degree d; of the irreducible complex representation afforded by &; equals
the multiplicity of the character x; as an irreducible constituent of the permutation
character 7 (under the action of conjugation). Let m =Y d;xi, xi € Irr(G). Then

d

di=<mxi>=> xi(u), (u;€Cy),
=0

where <, > is the usual inner product on the space of class functions on G and u;
is a representative of the class C';. From this we see that the number of inequivalent

irreducible representations of T(G) equals the number of non-zero row sums in the
character table of G. In particular, from the information above, we obtain for the
groups Sy and As the following:

Proposition 2. Let T(S5) and T(As) be as previously defined. Then:

(1) T(S5) =2 M1 @M3zdMydMs® MsD Mg ® My, and
(2) T(A5) =2 M3s@d Msd M3 D Msd Ms,

where M; denotes the full matrixz algebra over C of degree i.

§4. The Terwilliger Algebras of X(S5) and X(Aj)

We present in this section the main results of the paper. We start with the
following result.
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Theorem 1. The dimensions of T ,T,,T, and T for the groups S5 and As are
given by the following:

Tr T, T T
(1) Ss: 143 124 155 161
(2) As : 65 71 73 77

Proof. The dimensions of T},T,, and T are easily computed using the re-
sults in §2. Next, by direct calculation, we obtain for each of A; and S5 a
linearly independent set closed under multiplication which spans the set of all
products EfA;E} - EfAE;, = EfA;EFAE;, of the size asserted above. Since
T = (E;AE}), the set is a basis of T. 0O

Remark. The basis of T" obtained for each group consists of (0,1)-matrices. Hence
both T'(S5) and T'(As) are closed under Hadamard multiplication. Each generator
ErA;E; of T, is either contained in the basis obtained for 1" or gives rise to “new”

basis elements of 7. The basis for 1" arises from that of 7" in a similar manner.

For the rest of the paper, we fix the ordering of the conjugacy classes of the two
groups as follows:

(1) S5 conjugacy class representatives and orders:

C 0 Cl Cg C 3 04 05 06
w; : (1) (12)  (123) (12)(34) (1234) (12)(345) (12345)
1Cy) - 1 10 20 15 30 20 24

(2) As conjugacy class representatives and orders:

Co 01 02 03 04
w; + (1) (123) (12)(34) (12345) (12345)2
|Cy| : 1 20 15 12 12

We provide the following two matrices, each indexed by the conjugacy classes
in the order assumed earlier, whose entries indicate the distribution of the basis
elements of T,,7T, and T respectively. For example, the entry 3 + 2 4+ 1 in the
(Cy, Cg)-position for the group Ss indicates that two additional basis elements of T
arise from the set {Ef A; E§ }o<j<s, and further, an extra basis element of T comes
from those of T" in the same location. The leftmost number in the (C;, Ck)-entry
indicates the number of nonzero E;A;E; of T;,. Both matrices are symmetric, so
we omit the entries below the diagonal.

1 1 1 11 1 1
3 3 3 3 3 2
4+1 3 3+42 3+2  3+1
Ss 4 34+141 3 3
4+43+2 342 3+42+1
4+1  34+1
4+4



1 1 1 1 1

5+1 4+0+1 3 3

As 5+1+42 4 4
4 4

4

We briefly describe the idea behind the rest of our investigation, which uses
mainly the fact that T is a semi-simple algebra.

First, let Z(T") denote the center of T. Since T contains the diagonal matrices
E?, we observe that Z(T') consists of block diagonal matrices, and that

d
@ (EXTE})
=0

Recall that the dimension of Z(T') equals the number of minimal two-sided ideals
of T. We let s = dim Z(T').

We then exhibit a set {¢; | 1 < i < s} of primitive central idempotents for 1" (i.e.,
81‘2 = &; 75 0, €& = (Sij&', 1T = Zle Eiy andéi S Z(T)), from which we obtain
the decomposition of 7" into a sum of minimal two-sided ideals, each isomorphic to
matrix algebras. Thus,

T = @T{fi = @Mdl((:)

where M, (C) is a full matrix algebra over C of degree d;.

Lemma 1. The dimensions of the centers of T(Ss) and T(As) are as follows:
(1) dim Z(T(S5)) =8
(2) dim Z(T(A5)) = 6.

Proof. The result is obtained by explicitly determining a basis for the center. This

is done as follows. First we determine a basis for Z(EfTEY) for alli=0,1,...,d.
Then let {b;} be the union of the bases of the Z(ETE}) for all i. Thusify € Z(T),
we can write y = Y ¢jb;,c; € Z. The system of linear equations {z;y = yz;},
ranging over all elements z; in the basis of T' (obtained earlier) is then solved, and
yields up to scalars, the required basis for Z(7'). O

Let {e; |1 < i < s} be the basis of the center obtained above, so that
Z(T) = Ce; @ --- @ Ces.
Then

thek, ti; € Z.

Define the matrices B; = (tfj), fori=1,...,s by



Since these matrices mutually commute, they are simultaneously diagonalised by a
non-singular matrix, say P. Thus, for each i =1,...s, we have

v1 (i)
P 'B;P =

Next, define the matrix M = (v;(j)) by

(M)zg = Uz’(j)-

Then we see that the primitive central idempotents €q,...,e; are given by the
following matrix equation:

(81,... ,55) = (61,... ,GS)M_l.

In the next theorem, for brevity we shall write e;j, := E;A;E;. The notation
nijk Or nyjk indicates a basis element of 1" obtained from the element e;;y.

Theorem 2. (i) The primitive central idempotents of T'(S5) and T'(As) are given
by the following :

(1) T(Ss) :
1
g1 = 31606 + €626 — 2M626 — €636 — €666 — 2M66,6 — 2166,6)
1
g2 =  15(2e404 — €434 — Ny34 + €464 — N4p4)
1
€3 = 15(4es303 — 2e323 — 2e333 + €363)
1
+ 57 (4e404 — 2e424 + €434 + 3n434 + €464 — 3N464)
1
+ 51 (5e606 — €626 — €636 — €666 + 6166,6 + 6166,6 + 6166.6)
1
€4 = 1g(3e202 + €202 — 4ng9o — €232)
1
+ 55 (4€404 + 2€424 — 2n424 + €434 — DN434 — €464 — N464)
1
+ 15 (3505 — 3ns25 + €535 — €565)
1
+ 5 (€606 — N66.6)
1
€5 =  1g(2e202 — €222 — M222 + €232)
1
+ 55 (4€404 — 3ea24 + 3n424 + €434 — SNuzs — €464 + 4N464)
1
+ 15(2€505 — 2525 — €535 + €565)
1
g6 = 1g(6e101 +e1o1 —4ei3n)
1
+ 35 (6e202 + €202 + 5n220 + €232 — 4e262)
1
+ 1z (4e303 — €323 + 4e333 — €363)
1
+ 55 (4€404 — €424 + 5N424 — €434 + 51434 — €464)
1
+ 35 (6e505 — 4esas + 10n525 + €535 + €565)
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1
g7 = 5(3ei01 — €121 + €131)

+ 1—12(36202 — €222 + 4n222 — €232 + €262)
+ 5 (4es03 + 2e303 — 2e333 — €363)
+ 57 (4€104 + 2€404 — AM424 — €434 + BNags — €464 + 3Nas)
+ 15 (€505 + €525 + 2n505 — €535 — €565)
+ 51 (5es06 — €626 + 2n626 + €636 — €666 — An66,6 — 4nee,6 + 6N66.6)
€8 = €poo t+ 1—10(6101 + e121 + €131)
+ %( €202 + €222 + €232 + €262)
+ 1—15(6303 + €323 + €333 + €363)
+ 3—10(6404 + €424 + €434 + €464)
+ %(6505 + €525 + €535 + €565)
+ 2—14(6606 + €626 + €636 + €666)
(2) T(As) -
_ 1
€1 = 1g(2€101 — €111 — N1t + e121)
€9 = 3—10(66101 + €111 + 5n111 + €121 — 4e1z1 — deqqn)
+ (46202 — €212 + 4e220 — €232 — 6242)
g3 = 56(3e101 + e —4ni — €11 + V5e131 — Vbera1)
+ 55(5es03 — VBez13 + Vbesss — 5esas)
+ 55 (5eaon + Veq1s — 5eaza — V5eas)
ex = 35(3e101 + €111 — 4ni11 — €191 — V5e131 + V5e141)
+ %(56303 + V/Bes13 — Vbesss — Heays)
+ %(56404 — VBegiq — Beaza + \/56444)
€5 = 1—12(36101 —e111 +4n111 — €121 + €131 + €141)
+ £ (2e202 — €222)
+ -5(5es03 — €313 — €333 + Hezaz)
+ %(56404 — €414 + D434 — €444)
€6 = €poo t+ 21—0(6101 + e111 + €121 + €131 + €141)
+ %( €202 + €212 + €222 + €232 + €242)
+ %(6303 + e313 + €333 + €343)
+ %(6404 + €414 + €434 + €444)

(ii) The degrees of the irreducible complex representations afforded by the idempo-
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tents are given below:

(1) T(S5) : E; €1 €9 €3 €4 E5 E¢ E7 Es

dege; 1 1 3 3 5 5 6 7

(2) T(As) : € €1 €9 €3 E4 €5 Eg

dege; 1 2 3 3 5 5

Proof. The idempotents were obtained using the method described before the

~Y

theorem. To determine the degrees d; afforded by each e;, we know that Te; =
Mg, (C), hence d;? = dim Te; equals the number of linearly independent elements
in the set {x;e;} where the z; are the basis elements of 7. We then count this
number for each idempotent ¢;. [J

Theorem 3. (Structure Theorem for T(Ss) and T(As))

(1) T(S5)=ZMidM;BMsdMszd MsD MsdD Mg d Mz,
(2) T(A5) =MD ModMszd Msd Msd Ms,

where M; is a full matriz algebra over C of degree 1.

Proof. This is immediate from the preceding theorem. [

Remarks. 1. Let V = CI¢l (column vectors) and let <, > denote the form
< wu,v >:= u'v, (u,v) € V, where t denotes transpose and T denotes the complex
conjugate of v. Then (V, <,>) is the standard module of Mat|(C) (acting on V'
by left multiplication), and V' decomposes into an orthogonal direct sum

V=aV& - -deV.

Here e,V corresponds to the idempotent ¢, = ﬁ > gec 9’ of highest degree (i.e.,

eg for T'(Ss) and e¢ for T'(A5)) and is an irreducible T'(G)-submodule called the
principle submodule.

2. Recall that the primitive central idempotents of T (G) are given by &; =

% > gec Xi(9)g", xi € Irm(G). We observe that in the case of T'(S5),

- x( .
g +e3 =&y = % E x(9)9",
g€Ss

where x is the irreducible character of degree 5 of Sy corresponding to the partition
[2,2,1]. The rest of the idempotents of T'(S5) and T'(S5) are identical, i.e., g; = &;,
after renumbering.

Similarly, for T'(As), we have

e1tey =&y = % > vl9)g

gEAs
9



where 1 is the irreducible character of A5 of degree four obtained from the standard
permutation representation afforded by the doubly transitive action of A5 on a set
of five points. And as in the case of S5, after renumbering, ¢; = &;, for the rest of
the idempotents.

We would like to explicitly determine later the irreducible representations af-
forded by these idempotents.

3. The observations in this paper hopefully give insight to the structure of the
Terwilliger algebras of group association schemes for the general case, which we
intend to investigate next.
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