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1. Introduction

Weight enuemrators make relationships between coding theory, in-
variant theory, and modular forms [3, 4, 5, 9, 11, 13, 15, 19, 20]. A strik-
ing generalization of the weight enumerators was obtained by Ozeki
[18], who gave the concept of Jacobi polynomials for codes in analogy
with Jacobi forms [10] of lattices and presented a generalization of the
MacWilliams identity. In [16], the notion of the intersection polynomi-
als was given for some computations of extremal codes.

In [17], the concepts of genus g Jacobi polynomials and intersection
enumerators of binary codes were introduced and the MacWilliams type
identities of Jacobi polynomials were given. Moreover, the concept of
genus g (homogeneous) Jacobi polynomials of binary codes in [17] was
generalized to the notion of g-fold joint (homogeneous) Jacobi polyno-
mials of codes over Fq and Zk in [6] and the MacWilliams type identity
for the generalized notion was presented. In the present paper, we give
the generalizations of the concepts discussed in [17], such as genus g Ja-
cobi polynomials and genus g intersection polynomials of binary codes,
to some non-binary cases, like for codes over Fq and Zk. Further, we
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generalize some of the results in [17], particularly, the MacWilliams
type identities for Jacobi polynomials.

Throughout this paper, we assume that R denotes either the finite
field Fq of order q, where q is a prime power or the ring Zk of integers
modulo k for some positive integer k ≥ 2. Moreover, R∗ denotes the
set of non-zero elements of R. We prefer to call the elements of Rn as
vectors. For u = (u1, . . . , un) ∈ Rn, we denote wt`(u) := #{i | ui = `}.

The purpose of this paper is to introduce the following polynomi-
als and discuss their properties. Let [g] := {1, . . . , g} and we denote
by na(u1, . . . , ug) the number of i such that a = (u1,i, . . . , ug,i) for
u1, . . . , ug ∈ Rn and a ∈ Rg.

Definition 1.1. Let g be a positive integer and C be an R-linear code
of length n. Let

(
[g]
p

)
:= {(K1, . . . , Kp) ∈ Zp | 1 ≤ K1 < · · · < Kp ≤ g}

for any positive integer p such that 1 ≤ p ≤ g.

(1) The g-th weight enumerator of C is

W
(g)
C ({xa}a∈Rg) =

∑
u1,...,ug∈C

∏
a∈Rg

xna(u1,...,ug)
a .

(2) The g-th intersection enumerator of C is

I
(g)
C ({XK,L}1≤p≤g,K∈([g]

p ),L∈(R∗)p)

=
∑

u1,...,ug∈C

∏
1≤p≤g

∏
K ∈

(
[g]
p

)
∏

L∈(R∗)p
X
nL(uK1

,...,uKp )

K,L .

(3) The g-th homogeneous Jacobi polynomial of C with reference
vector v ∈ Rn is

Jac
(g)
C,v({ya}a∈Rg+1) =

∑
u1,...,ug∈C

∏
a∈Rg+1

yna(u1,...,ug ,v)
a .

(4) Assume that X(g+1),(j) = 1 for all j ∈ R∗. The g-th inhomo-
geneous Jacobi polynomial of C with reference vector v ∈ Rn

is

Jac
(g)
C,v({XK,L}1≤p≤g+1,K∈([g+1]

p ),L∈(R∗)p)

=
∑

u1,...,ug∈C

∏
1≤p≤g+1

∏
K ∈

(
[g+1]

p

)
ug+1 = v

∏
L∈(R∗)p

X
nL(uK1

,...,uKp )

K,L .
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Equivalently, we can also write the g-th inhomogeneous Jacobi
polynomial of C with reference vector v ∈ Rn as follows:

Jac
(g)
C,v({X(k),(`)}k∈[g],j∈R∗ , {XK,L}2≤p≤g+1,K∈([g+1]

p ),L∈(R∗)p)

=
∑

u1,...,ug∈C

∏
k∈[g]

∏
`∈R∗

X
n`(uk)
(k),(`)




∏
2≤p≤g+1

∏
K ∈

(
[g+1]

p

)
ug+1 = v

∏
L∈(R∗)p

X
nL(uK1

,...,uKp )

K,L

 .

Note that when we say u1, . . . , ug ∈ C in the definitions of the four
polynomials, we mean that the vectors ui’s are not necessary to be
distinct.

Example 1.1. Let C2 be an F3-linear code with length 4 having the
codewords: (0, 0), (1, 1), (2, 2). The following examples will make the
polynomials in Definition 1.1 that are in complicated looking for a
simple concept, easy to understand. We derive the polynomials for
g = 2. Let v = (1, 2) ∈ F2

3 be the reference vector for the homogeneous
and inhomogeneous Jacobi polynomials.

W
(2)
C4

({xa}a∈F2
3
) = x2(0,0) + x2(1,0) + x2(2,0) + x2(0,1) + x2(1,1) + x2(2,1) + x2(0,2)

+ x2(1,2) + x2(2,2)

I
(2)
C4

({XK,L}1≤p≤2,K∈([2]
p ),L∈(F∗3)p

) = 1 +X2
(1),(1) +X2

(1),(2) +X2
(2),(1)

+X2
(1),(1)X

2
(2),(1)X

2
(1,2),(1,1) +X2

(1),(2)X
2
(2),(1)X

2
(1,2),(2,1)

+X2
(1),(1)X

2
(2),(2)X

2
(1,2),(1,2) +X2

(1),(2)X
2
(2),(2)X

2
(1,2),(2,2) +X2

(2),(2)

Jac
(2)
C4,v

({ya}a∈F3
3
) = y1(0,0,1)y

1
(0,0,2) + y1(1,0,1)y

1
(1,0,2) + y1(2,0,1)y

1
(2,0,2)

+ y1(0,1,1)y
1
(0,1,2) + y1(1,1,1)y

1
(1,1,2) + y1(2,1,1)y

1
(2,1,2)

+ y1(0,2,1)y
1
(0,2,2) + y1(1,2,1)y

1
(1,2,2) + y1(2,2,1)y

1
(2,2,2)
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Jac
(2)
C,v({XK,L}1≤p≤3,K∈([3]

p ),L∈(F∗3)p
) = 1 +X2

(1),(1)X
1
(1,3),(1,1)X

1
(1,3),(1,2)

+X2
(1),(2)X

1
(1,3),(2,1)X

1
(1,3),(2,2) +X2

(2),(1)X
1
(2,3),(1,1)X

1
(2,3),(1,2)

+X2
(1),(1)X

2
(2),(1)X

2
(1,2),(1,1)X

1
(1,3),(1,1)X

1
(1,3),(1,2)X

1
(2,3),(1,1)X

1
(2,3),(1,2)

X1
(1,2,3),(1,1,1)X

1
(1,2,3),(1,1,2)

+X2
(1),(2)X

2
(2),(1)X

2
(1,2),(2,1)X

1
(1,3),(2,1)X

1
(1,3),(2,2)X

1
(2,3),(1,1)X

1
(2,3),(1,2)

X1
(1,2,3),(2,1,1)X

1
(1,2,3),(2,1,2)

+X2
(2),(2)X

1
(2,3),(2,1)X

1
(2,3),(2,2) +X2

(1),(1)X
2
(2),(2)X

2
(1,2),(1,2)X

1
(1,3),(1,1)

X1
(1,3),(1,2)X

1
(2,3),(2,1)X

1
(2,3),(2,2)X

1
(1,2,3),(1,2,1)X

1
(1,2,3),(1,2,2)

+X2
(1),(2)X

2
(2),(2)X

2
(1,2),(2,2)X

1
(1,3),(2,1)X

1
(1,3),(2,2)X

1
(2,3),(2,1)X

1
(2,3),(2,2)

X1
(1,2,3),(2,2,1)X

1
(1,2,3),(2,2,2)

If there is no confusion, we prefer to write the notations of the above
said polynomials in a simple form by omitting the notations of the

variables in the polynomials as W
(g)
C , I

(g)
C , Jac

(g)
C,v and Jac

(g)
C,v.

Remark 1.1. We have the following remarks:

(1) It is easy to see that{
Jac

(g)
C,0 = W

(g)
C

Jac
(g)
C,0 = I

(g)
C .

(2) The number of variables in each polynomial is given by

W
(g)
C : |R|g,

I
(g)
C :

∑g
p=1

(
g
p

)
(|R| − 1)p = |R|g − 1,

Jac
(g)
C,v : |R|g+1,

Jac
(g)
C,v :

∑g+1
p=1

(
g+1
p

)
(|R| − 1)p − (|R| − 1)

= |R|(|R|g − 1).

This paper is organized as follows. In Section 2, we give definitions
and some basic properties of codes used in this paper. In Section 3,
we give relations between the four polynomials (Theorem 3.1, Theo-
rem 3.2, Theorem 3.3). In Section 4, we give the MacWilliams type
identities for a g-th homogeneous Jacobi polynomial (Theorem 4.1) and
a g-th inhomogeneous Jacobi polynomial (Theeorem 4.2).

2. Preliminaries

We refer the readers to [1, 12, 14] for the background of the coding
theory. Let Fq be the finite field of order q, where q = pf for some
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prime number p. Then Fnq denotes the n-dimensional vector space over
Fq equipped with the following inner product

u · v :=
n∑
i=1

uivi,

where u = (u1, . . . , un), v = (v1, . . . , vn) ∈ Fnq . If q is an even power f
of an arbitrary prime p, then it is convenient to consider another inner
product given by

u · v :=
n∑
i=1

uivi
√
q

On the other hand, let Zk be the finite ring of integers modulo k for
some positive integer k ≥ 2. Then Znk denotes the Zk-module of all n-
tuples over Zk. Let u = (u1, . . . , un), v = (v1, . . . , vn) be two elements
of Znk . Then the inner product of u and v on Znk is defined as

u · v :=
n∑
i=1

uivi.

An R-linear code C of length n is either a vector subspace of Rn

when R represents Fq or a submodule of Rn if R denotes Zk. The dual
of an R-linear code C is denoted by C⊥ and defined as

C⊥ := {v ∈ Rn | u · v = 0 for all u ∈ C}.

Let a = (a1, . . . , ag) ∈ Rg with nonzero weight p. Then Vsupp(a) :=

(i | ai 6= 0), where i’s are in ascending order, is an element of
(
[g]
p

)
. Let

K = (K1, . . . , Kp) ∈
(
[g]
p

)
. Then by k ∈ K we mean that k = Kj for

some 1 ≤ j ≤ p. Moreover, by K
′ ⊂ K, we denote either a r-tuple

K ′ = (Km1 , . . . , Kmr) for 1 ≤ r ≤ p such that 1 ≤ m1 ≤ · · · ≤ mr ≤ p
or an empty tuple K

′
which we prefer to write as ∅.

Now we have the following useful lemma for this paper.

Lemma 2.1. Let u1, . . . , ug be elements of Rn. Then the following
hold.

(1)
∏
a∈Rg ,
a6=0

∏
K ⊂ Vsupp(a),

K 6= ∅

X
na(u1,...,ug)
K,aK

=
∏

1≤p≤g

∏
K ∈

(
[g]
p

)
∏

L∈(R∗)p
X
nL(uK1

,...,uKp )

K,L ,

where aK is the length |K| vector indexed by K such that aK =
(ai1 , . . . , ai|K|) with i1 < · · · < i|K|.
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(2) For 0 6= a ∈ Rg, xa = x0
∏

K ⊂ Vsupp(a),
K 6= ∅

∏
K′⊂K

x(−1)
|K|−|K′|

aK′
, where

aK′ is the length g vector such that aK′,i = ai for i ∈ K ′, aK′,i =
0 for i 6∈ K ′, and a∅ = 0.

Proof. (1) The left-hand side counts for 1 ≤ i ≤ n, the number of pairs
{(K, aK) | K ⊂ Vsupp(u1,i, . . . , ug,i)}. The right-hand side counts for
1 ≤ i ≤ g, the number of pairs {(K,L) | K ⊂ Vsupp(ui,1, . . . , ui,n)}.

(2) Let the exponent of xaK′ in the right-hand be E(xaK′ ). It is
immediate that xaK′ appears only once for K ′ = Vsupp(a). Let the
length of Vsupp(a) and K ′ be m and `, respectively. Then for K ′ 6=
Vsupp(a) with ` 6= 0, we have

E(xaK′ ) =
m∑
k=`

#{K ∈
(

[g]

k

)
| K ′ ⊂ K ⊂ Vsupp(a)}

=
m∑
k=`

(−1)k−`
(
m− `
k − `

)

=
m−∑̀
t=0

(−1)t
(
m− `
t

)
= (1 + (−1))m−`

= 0.

Now for K ′ 6= Vsupp(a) with ` = 0, we have

E(xaK′ ) = 1 +
m∑
k=1

#{K ∈
(

[g]

k

)
| K ⊂ Vsupp(a)}

= 1 +
m∑
k=1

(−1)k
(
m

k

)
= (1 + (−1))m

= 0.

Thus the above discussed sums conclude that the right-hand side con-
sists of xa only. This completes the proof. �

3. Relations between four polynomials

3.1. Weight enumerators and Intersection enumerators. In this
section, we give a relation between weight enumerators and intersection
enumerators.
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Theorem 3.1. Let C be an R-linear code of length n. Then the fol-
lowing hold.

(1) W
(g)
C

x0 ← 1, xa ←
∏

K ⊂ Vsupp(a),
K 6= ∅

XK,aK for a 6= 0

 = I
(g)
C ,

where a ∈ Rg, and aK is the length |K| vector indexed by K
such that aK = (ai1 , . . . , ai|K|) with i1 < · · · < i|K|.

(2) xn0I
(g)
C

(
XK,L ←

∏
K′⊂K

x
(−1)|K|−|K′|
LK′

)
= W

(g)
C ,

where K = (K1, . . . , Kp) ∈
(
[g]
p

)
for 1 ≤ p ≤ g, and K ′ =

(Km1 , . . . , Kmr) for 1 ≤ r ≤ p and 1 ≤ m1 ≤ · · · ≤ mr ≤ p, and
LK′ is the length g vector such that LK′,i = Lj for i = Kmj

∈ K ′
where 1 ≤ j ≤ r, LK′,i = 0 for i 6∈ K ′, and L∅ = 0.

Proof. (1) By Lemma 2.1 (1),

W
(g)
C

x0 ← 1, xa ←
∏

K ⊂ Vsupp(a)
K 6= ∅

XK,aK for a 6= 0



=
∑

u1,...,ug∈C

 ∏
a∈Rg ,
a6=0

∏
K ⊂ Vsupp(a),

K 6= ∅

X
na(u1,...,ug)
K,aK


=

∑
u1,...,ug∈C

∏
1≤p≤g

∏
K ∈

(
[g]
p

)
∏

L∈(R∗)p
X
nL(uK1

,...,uKp )

K,L

= I
(g)
C .
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(2) Let u1, . . . , ug ∈ Rn and a ∈ Rg. We observe for a 6= 0 that

xn0 = x
n0(u1,...,ug)
0

∏
a∈Rg x

na(u1,...,ug)
0 . Now by Lemma 2.1,

xn0I
(g)
C

(
XK,L ←

∏
K′⊂K

x
(−1)|K|−|K′|
LK′

)

= xn0
∑

u1,...,ug∈C

∏
1≤p≤g

∏
K ∈

(
[g]
p

)
∏

L∈(R∗)p

( ∏
K′⊂K

x
(−1)|K|−|K′|
LK′

)nL(uK1
,...,uKp )

= xn0
∑

u1,...,ug∈C

∏
a∈Rg ,
a6=0

 ∏
K ⊂ Vsupp(a),

K 6= ∅

∏
K′⊂K

x(−1)
|K|−|K′|

aK′


na(u1,...,ug)

=
∑

u1,...,ug∈C

x
n0(u1,...,ug)
0

∏
a∈Rg ,
a6=0

x0 ∏
K ⊂ Vsupp(a),

K 6= ∅

∏
K′⊂K

x(−1)
|K|−|K′|

aK′


na(u1,...,ug)

=
∑

u1,...,ug∈C

x
n0(u1,...,ug)
0

∏
a∈Rg ,
a6=0

xna(u1,...,ug)
a

= W
(g)
C .

Hence we complete the proof. �

Example 3.1. Applying Theorem 3.1 in Example 1.1, we have

W
(2)
C2

(x(0,0) ← 1, x(0,1) ← X(2),(1), x(0,2) ← X(2),(2), x(1,0) ← X(1),(1),

x(1,1) ← X(1),(1)X(2),(1)X(1,2),(1,1), x(1,2) ← X(1),(1)X(2),(2)X(1,2),(1,2),

x(2,0) ← X(1),(2), x(2,1) ← X(1),(2)X(2),(1)X(1,2),(2,1),

x(2,2) ← X(1),(2)X(2),(2)X(1,2),(2,2))

= I
(2)
C2

(X(1),(1), X(1),(2), X(2),(1), X(2),(2),

X(1,2),(1,1), X(1,2),(1,2), X(1,2),(2,1), X(1,2),(2,2)).
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x2(0,0)I
(2)
C2

(X(1),(1) ←
x(1,0)
x(0,0)

, X(1),(2) ←
x(2,0)
x(0,0)

, X(2),(1) ←
x(0,1)
x(0,0)

,

X(2),(2) ←
x(0,2)
x(0,0)

, X(1,2),(1,1) ←
x(0,0)x(1,1)
x(1,0)x(0,1)

, X(1,2),(1,2) ←
x(0,0)x(1,2)
x(1,0)x(0,2)

,

X(1,2),(2,1) ←
x(0,0)x(2,1)
x(2,0)x(0,1)

, X(1,2),(2,2) ←
x(0,0)x(2,2)
x(2,0)x(0,2)

)

= W
(2)
C2

(x(0,0), x(0,1), x(0,2), x(1,0), x(1,1), x(1,2), x(2,0), x(2,1), x(2,2)).

3.2. Homogeneous and inhomogeneous Jacobi polynomials. In
this section, we give a relation between homogeneous and inhomoge-
neous Jacobi polynomials.

Theorem 3.2. Let C be an R-linear code of length n. Then

Jac
(g)
C,v({ya}a∈Rg+1)

= (y0)
n
∏
`∈R∗

(
y(0,...,0,`)
y0

)wt`(v)

Jac
(g)
C,v(X(k),(`) ←

{
yL(k)

y0

}
, XK,L ←

∏
K′⊂K

y
(−1)|K|−|K′|
LK′

),

where L(k) denotes a vector with length g+1 such that L(k),i = ` if i = k,

L(k),i = 0 if i 6= k, and K = (K1, . . . , Kp) ∈
(
[g+1]
p

)
for 2 ≤ p ≤ g + 1,

and K ′ = (Km1 , . . . , Kmr) for 1 ≤ r ≤ p and 1 ≤ m1 ≤ · · · ≤ mr ≤ p,
and LK′ is the length g+1 vector such that LK′,i = Lj for i = Kmj

∈ K ′,
where 1 ≤ j ≤ r, LK′,i = 0 for i /∈ K ′, and L∅ = 0.
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Proof. From the right-hand side and using Lemma 2.1, we have

(y0)
n
∏
`∈R∗

(
y(0,...,0,`)
y0

)wt`(v)

Jac
(g)
C,v(X(k),(`) ←

{
yL(k)

y0

}
,

XK,L ←
∏
K′⊂K

y
(−1)|K|−|K′|
LK′

)

= (y0)
n

∑
u1,...,ug∈C

∏
k∈[g]

∏
`∈R∗

{
yL(k)

y0

}n`(uk)


∏
2≤p≤g+1

∏
K ∈

(
[g+1]

p

)
,

ug+1 = v

∏
L∈(R∗)p

( ∏
K′⊂K

y
(−1)|K|−|K′|
LK′

)nL(uK1
,...,uKp )

=
∑

u1,...,ug∈C

y
n0(u1,...,ug ,v)
0

∏
a∈Rg+1,
a6=0


y0

∏
K ⊂ Vsupp(a),

K 6= ∅,
v = ug+1

∏
K′⊂K

y(−1)
|K|−|K′|

aK′



na(u1,...,ug ,v)

=
∑

u1,...,ug∈C

y
n0(u1,...,ug ,v)
0

∏
a∈Rg+1,
a6=0

yna(u1,...,ug ,v)
a

= Jac
(g)
C,v({ya}a∈Rg+1).

This completes the proof. �

3.3. Intersection enumerators and Jacobi polynomials. In this
section, we give a relation between intersection enumerators and Jacobi
polynomials.

Theorem 3.3. Let C be an R-linear code of length n. Let s := |R∗|.
Denote the elements of R∗ by `1, . . . , `s. Then the following hold.

I
(g+1)
C =

n∑
r=0

∑
r1, . . . , rs ∈ Z≥0

r1 + · · ·+ rs = r
`1, . . . , `s ∈ R∗

 ∑
v∈C,

wt`i (v)=ri

Jac
(g)
C,v

Xr1
(g+1),`1

· · ·Xrs
(g+1),`s

.
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Proof. Let C be an R-linear code of length n. Then the (g + 1)-th
intersection enumerator for a code C can be written as:

I
(g+1)
C ({XK,L}1≤p≤g+1,K∈([g+1]

p ),L∈(R∗)p)

=
∑

u1,...,ug+1∈C

∏
1≤p≤g+1

∏
K ∈

(
[g+1]

p

)
∏

L∈(R∗)p
X
nL(uK1

,...,uKp )

K,L

=
∑

ug+1∈C

 ∑
u1,...,ug∈C

∏
k∈[g]

∏
`∈R∗

X
n`(uk)
(k),(`)


∏

2≤p≤g+1

∏
K ∈

(
[g+1]

p

)
∏

L∈(R∗)p
X
nL(uK1

,...,uKp )

K,L


∏
L∈R∗

X
nL(ug+1)

(g+1),L

=
∑

ug+1∈C

Jac
(g)
C,ug+1

({X(k),(`)}k∈[g],`∈R∗ ,

{XK,L}2≤p≤g+1,K∈([g+1]
p ),L∈(R∗)p)

∏
L∈R∗

X
nL(ug+1)

(g+1),L

=
n∑
r=0

∑
r1,...,rs∈Z≥0
r1+···+rs=r
`1,...,`s∈R∗

∑
v∈C,

wt`i (v)=ri

Jac
(g)
C,v({X(k),(`)}k∈[g],`∈R∗ ,

{XK,L}2≤p≤g+1,K∈([g+1]
p ),L∈(R∗)p)Xr1

(g+1),`1
· · ·Xrs

(g+1),`s
.

Hence the proof is completed. �

4. MacWilliams type identities

In this section, we give two MacWilliams type identities for g-th
homogeneous and g-th inhomogeneous Jacobi polynomials. We re-
call [8, 13] to introduce some fixed characters over R.

Let R = Fq, where q = pf for some prime number p. A character χ of
Fq is a homomorphism from the additive group Fq to the multiplicative
group of non-zero complex numbers. Now let F (x) be a primitive
irreducible polynomial of degree f over Fp and let λ be a root of F (x).
Then any element α ∈ Fq has a unique representation as:

(1) α = α0 + α1λ+ α2λ
2 + · · ·+ αf−1λ

f−1,

where αi ∈ Fp. We define χ(α) := ζα0
p , where ζp is the primitive

complex p-th root of unity ζp = e2πi/p, and α0 is given by Equation (1).
Again if R = Zk, then for α ∈ Zk, we define χ as χ(α) := ζαk , where

ζk is the primitive complex k-th root of unity ζk = e2πi/k.



12 CHAKRABORTY, MIEZAKI, AND OURA

For any α ∈ R, we have the following property:∑
β∈R

χ(αβ) :=

{
|R| if α = 0,

0 if α 6= 0.

4.1. Homogeneous Jacobi polynomials. The MacWilliams type
identity for the g-fold complete joint Jacobi polynomials were discussed
in [6, Theorem 5.1]. Then it is easy to give the MacWilliams type iden-
tity for the g-th homogeneous Jacobi polynomials as follows.

Theorem 4.1. Let C be an R-linear code of length n. Then we have

Jac
(g)

C⊥,v
({ya}a∈Rg+1)

=
1

|C|g
Jac

(g)
C,v




∑
b1, . . . , bg ∈ R
bg+1 = ag+1

χ

(
g∑
i=1

aibi

)
y(b1,...,bg ,bg+1)


a∈Rg+1


.

Proof. The proof is similar to the proof of [17, Theorem 12]. �

4.2. Inhomogeneous Jacobi polynomials. In this section, we give
a MacWilliams type identity for inhomogeneous Jacobi polynomials.

Theorem 4.2. Let C be an R-linear code of length n. Then we have
the following MacWilliams type relation:

Jac
(g)

C⊥,v
({X(k),(`)}k∈[g],`∈R∗ , {XK,L}2≤p≤g+1,K∈([g+1]

p ),L∈(R∗)p)

= (y0)
n
∏
`∈R∗

(
y(0,...,0,`)
y0

)wt`(v)

Jac
(g)
C,v(X(k),(`) ←

{
yL(k)

y0

}
, XK,L ←

∏
K′⊂K

y
(−1)|K|−|K′|
LK′

),

where L(k) denotes a vector with length g+1 such that L(k),i = ` if i = k,

L(k),i = 0 if i 6= k, and K = (K1, . . . , Kp) ∈
(
[g+1]
p

)
with K1 < · · · < Kp

for 2 ≤ p ≤ g + 1, and K ′ = (Km1 , . . . , Kmr) for 1 ≤ r ≤ p and
1 ≤ m1 ≤ · · · ≤ mr ≤ p, and LK′ is the length g + 1 vector such that
LK′,i = Lj for i = Kmj

∈ K ′, where 1 ≤ j ≤ r, LK′,i = 0 for i /∈ K ′,
and L∅ = 0, and for a ∈ Rg+1,

ya =
∑

b1, . . . , bg ∈ R
bg+1 = ag+1

χ(

g∑
i=1

aibi)
∏

1≤p≤g+1

∏
K ∈

(
[g+1]

p

) XK,BK
,
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where BK is the length |K| vector indexed by K such that BK =
(bi1 , . . . , bi|K|) with i1 < · · · < i|K|, and X∅,B∅ = 1, and X(g+1),(`) = 1
for all ` ∈ R.

Proof. For any w ∈ Rn, we define

δC⊥(w) :=

{
1 if w ∈ C⊥,
0 otherwise.

Then we have the following identity

δC⊥(w) =
1

|C|
∑
u∈C

χ(u · w).

Now

Jac
(g)

C⊥,v
({X(k),(`)}k∈[g],`∈R∗ , {XK,L}2≤p≤g+1,K∈([g+1]

p ),L∈(R∗)p)

=
∑

u1,...,ug∈C⊥

∏
k∈[g]

∏
`∈R∗

X
n`(uk)
(k),(`)




∏
2≤p≤g+1

∏
K ∈

(
[g+1]

p

)
ug+1 = v

∏
L∈(R∗)p

X
nL(uK1

,...,uKp )

K,L


=

∑
u1,...,ug∈C⊥

∏
1≤p≤g+1

∏
K ∈

(
[g+1]

p

)
K 6= (g + 1)
ug+1 = v

∏
L∈(R∗)p

X
nL(uK1

,...,uKp )

K,L

=
∑

w1,...,wg∈Rn

g∏
i=1

δC⊥(wi)
∏

1≤p≤g+1

∏
K ∈

(
[g+1]

p

)
K 6= (g + 1)
wg+1 = v

∏
L∈(R∗)p

X
nL(wK1

,...,wKp )

K,L

=
∑

w1,...,wg∈Rn

g∏
i=1

(
1

|C|
∑
ui∈C

χ(ui · wi)

)
∏

1≤p≤g+1

∏
K ∈

(
[g+1]

p

)
K 6= (g + 1)
wg+1 = v

∏
L∈(R∗)p

X
nL(wK1

,...,wKp )

K,L
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=
1

|C|g
∑

u1,...,ug∈C
w1,...,wg∈Rn

wg+1=v

χ(

g∑
i=1

ui,1wi,1 + · · ·+ ui,nwi,n)

∏
1≤p≤g+1

∏
K ∈

(
[g+1]

p

)
K 6= (g + 1)

∏
L∈(R∗)p

X
nL(wK1

,...,wKp )

K,L

=
1

|C|g
∑

u1,...,ug∈C

∏
1≤i≤n

 ∑
w1,i,...,wg,i∈R

χ(u1,iw1,i + · · ·+ ug,iwg,i)
∏

1≤p≤g+1

∏
K ∈

(
[g+1]

p

)
K 6= (g + 1)
wg+1 = v

XK,(wK1,i
,...,wKp,i)




=

1

|C|g
∑

u1,...,ug∈C

∏
a∈Rg+1


∑

b1,...,bg∈R
bg+1=ag+1

χ(a1b1 + · · ·+ agbg)


∏

1≤p≤g+1

∏
K ∈

(
[g+1]

p

)
K 6= (g + 1)

XK,BK




na(u1,...,ug ,v)

=
1

|C|g
∑

u1,...,ug∈C

∏
a∈Rg+1

yna(u1,...,ug ,v)
a

=
1

|C|g
∑

u1,...,ug∈C

yn0

∏
1≤p≤g+1

∏
K ∈

(
[g+1]

p

)
v = ug+1

∏
L∈(R∗)p

{ ∏
K′⊂K

y
(−1)|K|−|K′|
LK′

}nL(uK1
,...,uKp )

(by Lemma 2.1)
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=
1

|C|g
yn0
∏
`∈R∗

(
y(0,...,0,`)
y0

)wt`(v)

∑
u1,...,ug∈C

∏
1≤p≤g+1

∏
K ∈

(
[g+1]

p

)
K 6= (g + 1)
v = ug+1

∏
L∈(R∗)p

{ ∏
K′⊂K

y
(−1)|K|−|K′|
LK′

}nL(uK1
,...,uKp )

.

This completes the proof. �

We will discuss a generalization of the Broué–Enguehard map [5] and
Bannai-Ozeki map [2] to the case Jacobi polynomials of genus g in our
subsequent papers. Bonnecaze et al. [4] gave a connection between de-
sign theory and Jacobi polynomials. A generalization of the connection
to the case genus g Jacobi polynomials with multiple reference vectors
was given in [7]. This gives rise to a natural question: is it possible to
generalize the results of this paper to the case genus g Jacobi polyno-
mials with multiple reference vectors g? In our future work, we shall
investigate this question.
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