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1 Introduction

The theorem of Gleason [14] says that the weight enumerators We(x,y) of binary Type 1T
codes C' (that is, self-dual and doubly even codes over the binary field Fy) are in the ring of
|¢ of the action of the finite group

o~ (4 1) e

of order 192, and that this invariant ring is isomorphic to the polynomial ring generated

polynomial invariants C[z, y

by two homogeneous polynomials of degrees 8 and 24. Note that we can take the weight
enumerators of the extended Hamming [8, 4, 4] code and the extended Golay [24, 12, 8] code
as the generators of the invariant ring. The theorem of Broué and Enguehard [5] says that
elliptic modular forms of weight n/2 are obtained from the homogeneous weight enumerators
We(x,y) of binary Type II codes C|, by substituting the Jacobi theta series 5(27) and 62(27)
for x and y, respectively. The elliptic modular form obtained in this way from Wg(z,y)
coincides with the theta series of the lattice obtained by Construction A (see [8, p. 183])
from the binary Type II code C we started with. Moreover, it is shown by Ozeki [23] and

Runge [30], that all the elliptic modular forms are obtained from the invariant ring Clx, y|#

of the index 2 subgroup
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of the group GG above, by the same substitution by the Jacobi theta series 03(27) and 0,(27)
for = and y, respectively.

This theme of exploring the connections between codes and lattices, between the weight
enumerators of codes and the theta series of the lattices, as well as between the polynomial
invariants of finite groups and the modular forms has been extensively studied, and general-
ized to many directions, by many authors. For a recent survey on these subjects, see Rains
and Sloane [25], Bannai [2].

For example,

(i) By considering multi-weight enumerators (of binary Type II codes) to get Siegel mod-
ular forms (Duke [10], Herrmann [16], Runge [26, 27, 30]),

(ii) By considering certain joint weight enumerators of binary Type II codes (Jacobi
polynomials in the sense of Ozeki [23]) to get Jacobi forms (Bannai and Ozeki [4],
Runge [28)),

(iii) By considering Lee weight enumerators of self-dual codes over F,, to get Hilbert mod-
ular forms (see Ebeling [11]).

Also, it is now fashionable to consider codes not just over finite fields but over certain finite
rings, say Z/47,7./mZ etc. Actually, this approach is very fruitful.

The purpose of this paper is to push this study further. Namely, we consider codes over
the finite ring R = Fy + ulFy = Z[i]/27Z]i] of 4 elements, where u? = (0. We define Type 11
codes over R and their symmetrized biweight enumerators, and establish the relationship
with symmetric Hermitian modular forms. It seems that this finite ring R fits the study
of Hermitian modular forms very well, and we were aware of this fact for several years. In
the meantime, the paper which explicitly states the connection between Type Il codes and
even unimodular Hermitian lattices was published Dougherty, Harada, Gaborit and Solé [9],
together with the classification of Type II codes of lengths 4 and 8 over R. (Note that the
length of a Type II code over R is always a multiple of 4.) In this paper, we connect the
algebra of symmetrized biweight enumerators of Type II codes over the ring R with the
algebra of polynomial invariants by a certain finite group action, and then directly construct
symmetrized Hermitian modular forms from the polynomial invariants by the finite group,
by substituting certain theta series for the indeterminates of the polynomial. This will be
explained in Section 8 of the present paper, after the preliminary sections Section 2 and
Section 3. One of the main purposes of this paper is to give the classification of Type II
codes over R for the lengths 12 and 16. In this classification, we utilize the following key
method which is explained in Section 4. That is, there is a one to one correspondence
between the equivalence clases of Type II codes of length n over R with a prescribed binary
image C, and the conjugacy classes of fixed-foint-free involutions in the automorphism group
of the binary Type II code C' of length 2n. The actual classifications of Type IT codes over
R of lengths 12 and 16 are obtained in Section 5, by applying the method of Section 4 to



the known classification of binary Type II codes of lengths 24 and 32, which were obtained
by Pless and Sloane [24] and Conway, Pless and Sloane [7], respectively. There are 82, 1894
Type II codes over R up to equivalence for the lengths 12, 16, respectively.

In the rest of this paper, we consider symmetric Hermitian modular forms of degree
2. The structure of the algebra of symmetric Hermitian forms of degree 2 was studied
by Freitag [12], Nagaoka [21] and Runge [29]. They gave the generators of this ring very
explicitly. Namely, they gave the 6 generators of weights 4, 8, 10, 12, 12, and 16. (Their
generators are slightly different, but are related to each other.) A relation among the
generators was explicitly given in Nagaoka [21]. We note that the existence of such a
relation was stated in [12] and [29]. Runge [29] also gave some general description of the
ring of modular forms depending on a choice of modular embeddings determined by “Picard
type”. As we show in Section 8, the symmetrized biweight enumerator of a Type II code
of length n over R gives a symmetric Hermitian modular form of degree 2 and of weight
n. We can calculate the symmetric Hermitain modular forms of degree 2 corresponding to
each of the Type II codes in the classification. The results are tabulated in Table 4 for
lengths 8 and 12. Then we can identify the generators of weight 4, 8, 12, 12 and 16 of
Freitag (and Nagaoka) in terms of the symmetrized biweight enumerators of the codes over
R. The remaining generator, a symmetric Hermitain modular form of weight 10, can not be
directly obtained from a code, because there is no Type II code of length 10. However, we
will show that it is in fact obtained as an invariant of a finite group G C GL(10, C) of order
737280. This group can be thought of a subgroup of index 2 in the natural matrix group
which leaves the symmetrized biweight enumerators invariant. This is very similar to the
situation where the Fisenstein series Fj is obtained as an invariant of the subgroup H of
index 2 of the group G in (1). We will describe the invariant of degree 10 of G C GL(10,C)
explicitly at the end of Section 8. It is implicit in [12, 21| that the dimension of the space
A7 of symmetric Hermitian modular forms of degree 2 and of weight k is given as follows:

3 14419
dim AstF = |
; 1m Ay (1 — t4)(1 _ tS)(l _ tlo)(l _ t12)2

It is expected that the 6 generators (due to Freitag and Nagaoka) will in fact reflect the
Cohen—Macaulay structure of the algebra of symmetric Hermitian modular forms of degree
2 suggested by the above mentioned dimension formula. The fact that Freitag—Nagaoka
generators actually reflect the Cohen-Macaulay structure was mentioned as a conjecture in
Nagaoka’s paper [21, p. 547], although it was known to Freitag before. Since the proof of
this fact (i.e. there exists the unique fundamental relation among generators), as well as
the correctness of the above dimension formula, was not explicitly stated in the literature,
we give two proofs of this fact in Section 7, for the convenience of the reader. Here we
treated only those modular forms with trivial character. The full Hermitian modular group
has the character v of order two. The ring of Hermitian modular forms of weight 2k with
character v* was determined by Hermann [15]. If k = 0 (mod 4), then v*/2 = 1, and we can



express the generators of modular forms without character by generators of modular forms
with characters at least in principle. Since we actually need some calculation to obtain these
expressions, we shall explain it in this paper. We see also that, if we use these expressions, we
can get the relation given by Nagaoka at once. The authors also thank Professor Nagaoka for
his help in understanding more on Hermitian modular forms. A part of the results obtained
in this paper was announced in several places by some of the authors. For example, see
3, 22].

The authors would like to thank the referee for bringing the articles [29], [31] to the
authors’ attension.

2 Preliminaries

This section collects the required notations and definitions. Some basic results which are
used in this paper are also given.

2.1 Type II Codes

In this paper, we study Type II codes over a commutative ring Fo+ulFy = {0, 1, u, 1+u} with
u? = 0 of order 4. Fy +ulF, is isomorphic to the quotient ring Z[i]/2Z[i] = {0,1,4,u = 1+1i}.
We shall consider the ring using whichever form is more convenient. Throughout this paper,
we denote by R the rings Fo + ulFy or Z[i| /2Z]1].

A code C of length n over R (or an R-code of length n) is an R-submodule of R™.
An element of C is called a codeword of C. A generator matrix of C' is a matrix whose
rows generate C'. The Hamming weight wtg(z) of a codeword x is the number of non-zero
components. The Lee weights of the elements 0,1, u, 1+ u of Fy + ulFy are 0,1,2 and 1,
respectively, and the Lee weight wty(x) of a codeword z is the sum of the Lee weights of
its components. The minimum Hamming and Lee weights dg and dy of C' are the smallest
Hamming and Lee weights among all non-zero codewords of C| respectively. We say that two
codes are equivalent if one can be obtained from the other by permuting the coordinates and
(if necessary) interchanging the two elements 1 and 1+ wu of certain coordinates for Fy + ulF,.
Codes differing by only a permutation of coordinates are called permutation-equivalent. The
automorphism group Aut(C') of C' consists of all permutations and changes of the above two
elements of the coordinates that preserve C.

Let z = (z1,...,2,) and ¥y = (Y1,...,Yn) be two elements of R™. We define the inner
product of x and y in R" by z -y = 2191 + - - - + Z,¥,. The dual code C* of C is defined as
Ct={zecRz-y=0forallyecC} Cisself-dualif C = C+. A code C is called Type II
it C = C* and wtz(z) = 0 (mod 4) for all codewords z € C. A self-dual code which are
not Type Il is called Type I.



2.2 The Gray Map

A map ¢ from R to F3 is defined by ¢(0) = (0,0),¢(1) = (0,1),¢(u) = (1,1) and ¢(1 +
u) = (1,0). The map is extended to R"™ naturally. The map ¢ is an isometry from
(R", Lee distance) to (F3", Hamming distance), and called the Gray map. The Gray map
gives several basic properties. For example, we have the following:

Proposition 2.1 (Dougherty et. al [9]). If C is a Type II R-code of length n and mini-
mum Lee weight d;, then ¢(C') is a binary Type II [2n,n,d;]| code.

Thus if there is a Type II code over R then the length is divisible by four. In particular,
there is a Type II code of length 4. Several upper bounds on minimum weights of binary
Type II codes and Type I codes are known. Using a known upper bound for binary Type II
codes, the minimum Lee weight d;(I1,n) of a Type II code of length n is bounded by
dr(I1,n) < 4[#] + 4. Similarly, the minimum Lee weight dz(I,n) of a Type I code of
length n is bounded by dy(I,n) < 4[2] +2,if n = 0 (mod 12), 4[2] + 6, if n = 11
(mod 12) and 4 [2] 4 4 otherwise. Note that the upper bound is incorrectly reported in [9,
Corollary 3.3] as 4 [2£] +4 if n # 22 (mod 24) and 4 [£] + 6 otherwise.

2.3 Symmetrized Biweight Enumerators

We first define a relation ~ on R? as follows: a ~ b if and only if a = b or a = ib for any
elements a,b € R?. The relation ~ gives an equivalence relation on R?. We set R? = R? / ~.
We denote an equivalence class in R? which contains an element a € R? by @. For example,
(17 1) = {(17 1)7 (ia Z)}

Let X7 (@ € R?) be independent variables. Set

Na(z,y) = [{J | (zj,y;) = a}l,

where x = (z1,...,2,),y = (y1,...,yn) € R". The symmetrized biweight enumerator of a
code C of length n is defined by

swee (X @ € R?) = Z H Xéva(x’y) € 7X@ € R?).

z,yeC geR2

Often we denote swec (Xg;@ € R?) by swee(Xg) shortly. This is a homogeneous polynomial
of degree n in ten variables X5 (@ € R?).

For several types of weight enumerators, the MacWilliams identities are known. For
the symmetrized biweight enumerators, one can easily establish the following MacWilliams
identity:

Lemma 2.2. Let C be an R-code of length n. Then

swee (Xg;a@ € R?) = |C|2 SWeg L Z Z yRel‘ac) X e R?).

bER2 c€b



2.4 Residue Codes and Torsion Codes

Any code over R is permutation-equivalent to a code C' with generator matrix of the form

< Ik.] A Bl—i-uBg )

2
0 wul, ulD )

where A, By, By and D are matrices over Fy. The binary [n, k| code CY with generator

matrix
( ]kl A Bl )7 (3)
is called the residue code of the code C. The binary [n, k; + ko] code C® with generator
matrix
fu A By (4)
0 Iy, D

is called the torsion code of C.
We have the following characterizations for residue codes and torsion codes of self-dual
codes over R.

Proposition 2.3 (Dougherty et. al [9]). If C is a self-dual code over R then CY is a
binary self-orthogonal code with CV" = C®. Moreover, if C is Type II then CY contains
the all-ones vector.

Remark. For the first assertion, see the proof of Proposition 4.3 in [9].

2.5 Hermitian Modular Forms of Degree 2
Let Hy be the Hermitian upper half space of degree 2:
Hy = {7 € My(C)|(T — 77)/2i > 0},

where 7" denotes the transpose of the complex conjugate of 7. Let I' be the Hermitian
modular group:

I'={g € GL(4,Zli])|g" g = J},

where
0 0 10
0 0 01
S = -1 0 00
0 -1 0 0

A holomorphic function f on Hy is called a Hermitian modular form (of degree 2) of
weight n if

f(r) = f('r) forall 7 € Hy, (5)

f(r) = det(Cr+ D)™ f((Ar+ B)(CT + D)) for all ( é lB) ) el. (6)



3 A Mass Formula of Type II Codes

In [9], a mass formula for Type Il codes was given. Unfortunately, the mass formula in [9]
contains some errors. Here we correct the errors and give the corrected mass formula. Note
that the classifications of Type II codes of lengths 4 and 8 given in [9] are correct.

Theorem 3.1. Let C be a code over R. Suppose that CY and C® have generator matrices
given by (3) and (4), respectively. If C' is Type 11, then there exists a unique (1,0)-matriz
B such that

0 UIkg uD

is a generator matriz of C. Moreover, we have

1) C® =t
2) The residue code O is a self-orthogonal code containing the all-ones vector,

3) B is symmetric and the Lee weights of the first ki rows of the generator matriz are a
multiple of 4.

Conversely, if OV and C® are binary codes with generator matrices given by (3) and (4),
respectively, and if the conditions 1)-3) are satisfied, then the R-code C with generator
matriz (7) is a Type II code.

Proof. Since C' is self-dual, Section III of [13] implies that there exists a unique matrix B
such that (7) is a generator matrix of C' and C® = cmt, By Proposition 2.3, if C' is self-
dual then CW is self-orthogonal. Moreover, if C' is Type II then CM contains the all-ones
vector. If C is Type II then the Lee weights of the first k; rows of the generator matrix must
be a multiple of 4. Since ( I, A By)( Iy, A By)" =0,

(I, +uB A By)( Iy, +uB A B))" =uB+uB" =0.

Thus B is symmetric.

Conversely, under the conditions 1)-3), the code C' is self-dual, and each row of the
matrix (7) has Lee weight divisible by four. By Proposition 4.3 in [9], each codeword of C'
has Lee weight divisible by four. O

Therefore we have the corrected mass formula.

Theorem 3.2. Let Ny, (n) be the number of distinct Type II R-codes of length n and let
o(n, k) be the number of distinct binary self-orthogonal codes of length n and dimension k
containing the all-ones vector, then

Na,(n) =Y o(n.k)-2'

n

k(k—1)
2



Proof. Theorem 3.1 implies that any Type II code is completely determined by its residue
code, its torsion code and the matrix B. The number of choices for the residue code of
dimension k is o(n, k) and the torsion code is determined uniquely by the residue code. It
remains to compute the number of choices for B. We can choose freely the diagonal entries
in B and the entries below the diagonal except all the entries in the first column. Since B is
symmetric, the entries above the diagonal are obtained from the entries below the diagonal.
The entries of the first column except the first row are determined by the condition that the
Lee weights of the first k; rows of the generator matrix (7) are a multiple of 4. Finally, we
check if the Lee weight of the first row of the generator matrix is divisible by four. Since
C® contains the all-ones vector, the entries of the sum of the first k rows in (7) are 1 or
1+ u. Thus the sum of the first k& rows has Lee weight divisible by four. Hence the first row
has Lee weight divisible by four by Proposition 4.3 in [9]. Therefore there are ok (==
ways of choosing B. O

Remark. o(n, k) is the number of self-orthogonal subspaces of dimension k—1 in a symplectic
geometry of dimension n — 2. The formula for o(n, k) is found in Ex. 8.1 of [32]

k-2 2n72i72 -1

2i+1 _ 1 7

where o(n,0) =0 and o(n,1) = 1.
Theorem 3.2 gives Ny, (4) = 14 and Ny, (8) = 22574. In [9], Type II codes of lengths
!
4 and 8 are classified, and from Table I in [9], one can check Ny, (n) = ; m for

n =4 and 8, where C runs through the inequivalent Type II codes of length n.

4 Relation to Binary Self-Dual Codes

In this section, we give a method for a classification of Type II codes over R using binary
Type II codes.
Let A be the group of permutations of R" generated by S, and mq,...,m,, where S,, is
the coordinate permutations, m; is defined by
mj: (T1,...,2) = (T1, .., o, (L+ W)z, g, ..., Ty)

for (zy,...,2,) € R". Recall that two codes C7, Cy over R are said to be equivalent if there
exists an element f € A such that f(C;) = Cs.
Let ¢ : R* — 2" be the Gray map. Then

omyot EY B



is the coordinate permutation (25 — 1,25). If o € S, is a coordinate permutation of R",
then & = ¢po¢~! is the coordinate permutation of F3" defined by

for 7 =1,2,...,n. Now it is clear that ¢~'A¢ coincides with the centralizer Cs, (7) of the
element 7 = (1,2)(3,4)---(2n — 1,2n).

Proposition 4.1. Let C,Cy be codes over R. Then Cy is equivalent to Cs if and only if
there exists an element p € Cs,, (1) such that p(¢(Ch)) = ¢(Cs).

Proof. 1f C is equivalent to Cy, then there exists an element f € A such that f(Cy) = Cs.
Taking p = ¢f¢~*, we obtain p(¢(C1)) = ¢(Cy). Conversely, if p(¢(C1)) = ¢(Cy) for some
p € Cs,, (7), then defining f by f = ¢ tpgp we find f € A and f(C) = Cs. O

Recall that the automorphism group of an R-code C'is by definition
Aut(C) = {f € Alf(C) = C}.
Proposition 4.2. Let C be a code over R. Then Aut(C') = Caug(g(c)) (7).

Proof. We have

Aut(C) = p(Aut(C))¢
= {ofo7'If € A, f(C) = C}
{p € Us,, (7)|p(¢(C)) = 6(C)}
Cantoey(7);
as desired. 0

Let D be the set of pairs (D, 7") where D is a binary code of length 2n, 7" € Aut(D) is a
fixed-point-free involution. We define an equivalence relation on D as follows; two elements
(D1,71), (Dg, 73) are equivalent if and only if there exists an element p € Sy, such that
p(D1) = Dy and prip! = 1. The equivalence class containing (D, 7') is denoted by [D, 7].
We denote by D the set of equivalence classes.

Let C be the set of codes over R of length n. For each C' € C, let [C] denote the
equivalence class containing C'. We denote by C the set of equivalence classes of codes over
R of length n.

Proposition 4.3. There is a one-to-one correspondence between C and D given by

[C] = [o(C), 7]. (8)



Proof. We see readily from Proposition 4.1 that the mapping (8) is well-defined and injective.
To show that (8) is surjective, pick [D,7'] € D. Then there exists an element o € Sy, such
that 07’0~ = 7, hence [D, 7] = [0(D), 7]. Now ¢~'(a(D)) is a code over R of length 2n.
Thus (8) is surjective. O

By Proposition 4.3, the classification of codes over R of length n reduces to the classifica-
tion of binary codes of length 2n and the classification of conjugacy classes of fixed-point-free
involutions in the automorphism group of each of the binary codes of length 2n. The au-
tomorphism group of a code over R can be computed from the automorphism group of the
corresponding binary code by Proposition 4.2. Moreover, by Proposition 2.1, the classifica-
tion of Type II codes over R of length n reduces to the classification of binary Type II codes
of length 2n and the classification of conjugacy classes of fixed-point-free involutions in the
automorphism group of each of the binary codes of length 2n.

5 Classification of Type II Codes of Lengths 12 and 16

A classification of Type II codes of lengths 4 and 8 was given in [9]. This was done directly.
In this section, we extend the classification to lengths 12 and 16 by the method given in the
previous section.

Table 1: Classification of Type II codes of length 12

Binary Codes Total A24 324 024 D24 E24 F24 EE24 DE24 G24
Numbers 82 16 3 24 4 8 8 6 12 1

5.1 Length 12

The classification of binary Type II codes of length 24 was given in [24]. There are exactly
nine inequivalent binary Type II codes, seven of which are indecomposable. The seven
codes are denoted by Asy, Bay, ..., Gaoy in [24] and we use these notations. We denote the
remaining two decomposable codes by E'Fsy and D FEyy where E Fsyy is the code which is the
direct sum of three copies of the Hamming [8, 4, 4] code. As described above, our method is
to obtain the automorphism group of a binary Type II code then to obtain conjugacy classes
of fixed-point-free involutions in the automorphism group. We complete the classification of
Type II codes of length 12 by listing the number of inequivalent codes in Table 1 and giving
their generator matrices in Appendix I. In the table, each number denotes the inequivalent
Type II codes obtained from the binary code given in the first row.

10



By Proposition 4.2, the orders of the automorphism groups of the inequivalent Type II

212 12!
codes are computed. Then we have Ny, (12) = 6667691054 = Z AR where C' runs
u

through the inequivalent Type II codes, showing that our clas&ﬁcatwn is complete.

Proposition 5.1. There are exactly 82 inequivalent Type II codes of length 12. There is
a unique Type II code with minimum Lee weight 8 of length 12. There are exactly four
imequivalent Type I codes minimum Hamming weight 4 of length 12.

We now give some observation of the Type II codes of length 12. Since the Gray map
¢ is an isometry map from (R", Lee weight) to (F'**, Hamming weight), the minimum Lee
weight of a Type II code C over R is the same as the minimum Hamming weight of ¢(C). It
is well known that the Golay code Ga4 is the unique binary Type 11 [24, 12, 8] code. By the
classification, only one Type II code over R is constructed from Ga4. Thus G121 is a unique
Type II code with minimum Lee weight 8. Only A9 16, D122, Fi2g and G127 have minimum
Hamming weight 4 and the others have minimum Hamming weight 2. The symmetrized
weight enumerator of the unique Type II code G121 with minimum Lee weight 8 is

sweg,,, (a,b,¢) = a' + 15a°c* + 240a°b*¢® + 32a°¢® + 384a°b°¢c
+120a*b® + 480a*b*c* + 15a*c® + 1280a°0°¢ + 720ab° 2
+240a%b*® + 384ab°® + 6462 + 12068 + 2.

5.2 Length 16

Similarly to length 12, we complete the classification of Type II codes of length 16 noting
that there are exactly 85 the binary Type II codes of length 32 [6] (see also [7]). However
we only list in Table 2 how many Type II codes are constructed from each binary code,
since there are a large number of such codes. For the 85 binary Type II codes, we use the
notations given in [7]. From Table 2, we have the following classification. We have checked

216 16!
the mass formula Ny, (16) = 461203898158916654 = Z | o

m where C' runs through

the inequivalent Type II codes.

Proposition 5.2. There are exactly 1894 inequivalent Type II codes of length 16, 21 of
which have minimum Lee weight 8.

The 21 Type II codes with minimum Lee weight 8 have minimum Hamming weight 4.
For the 21 Type II codes, we give generator matrices in Appendix II. Generator matrices of
the other codes are available from the authors.

11



Table 2: Type II codes of length 16

Codes Numbers | Codes Numbers | Codes Numbers | Codes Numbers
C1 10 C23 3 C45 2 ce7 24
C2 16 C24 9 C46 0 C68 38
C3 35 C25 48 C47 0 C69 52
C4 5 C26 8 C48 0 C70 26
Ch 22 c27 16 C49 0 cr1 27
C6 24 C28 2 C50 2 C72 4
C7 66 C29 46 Ch1 13 C73 3
C8 0 C30 67 Ch2 5 Cr4 43
C9 8 C31 124 Ch3 10 C75 24

C10 32 C32 11 Ch4 6 C76 2
C11 64 C33 14 C5h5 2 crr 22
C12 165 C34 156 C56 4 C78 14
C13 10 C35 0 Ch7 39 C79 4
C14 10 C36 20 C5h8 2 C80 7
C15 42 C37 24 C5h9 13 C81 1
C16 3 C38 40 C60 8 C82 3
C17 10 C39 14 Co1 26 C83 6
C18 6 C40 200 C62 2 C&4 4
C19 0 C41 24 C63 16 C85 7
C20 12 C42 22 Co4 2

C21 12 C43 12 C65 6

C22 9 C44 2 C66 2 Total 1894

6 Construction of Hermitian Modular Forms

For a polynomial f(Xz) € C[Xz;@ € R?] and a matrix T, we define

F1(Xa) = FO %),

beR2

where T' = (t;5)5 5z Set

T — _i Z(_l)Re(tac) ) (9)

ceb abeER?

Since Re(*(ia)c) = Re(*a(ic)) and b = {b,ib}, the right hand side of (9) is well-defined.
Suppose that C' is a self-dual code of length n over R. Since |C| = 2", Lemma 2.2 implies

swes(Xq) = sweet (Xg) = swee(Xa).

12



We define the mapping A — P4 = (5A—*a75)a’5€ﬁ, which gives a homomorphism from
GL(2,Z[i]) to GL(10,Z). Now

n———1—(c1,c2)
SWegA(Xa) :SWQC(XE) — Z H XE(A) T, \C1,c2 .

c1,c2€C geR2

If
A* = (Oén a12) 7
Qo1 (g2
then
Ny 1g(c1y e2) = [{J]A™ (c1j, 005) € T}
= ng(o101 + Q1aC2, a1¢1 + QaaCa).
Since

(c1,¢2) = (1101 + a1acs, Qo101 + i2cs)
is a bijection on C' x C', we see that

Py - ng(a11c1+aiace,an1c1+an2c2)
swet (Xz) = E H Xz = swee(Xz).

c1,02€C geR?

For a matrix S = S* € Mat(2,Z[i]), we define a mapping R? — Z/4Z, @ — S|a] as
follows. For each a € R?, regard a as an element of Z[i]* and define S[a] = a*Sa, where a*
is the conjugate transpose of a. Since (a*Sa)* = a*Sa, (ia)*S(ia) = (—i)i(a*Sa) = a*Sa,
and

(a+2b)"S(a+ 2b) = a*Sa+ 4(Re(a”Sb) +b*Sb) = a"Sa (mod 4),

the mapping @ — S[a] is well-defined as a mapping from R? to Z/4Z. The values of
Sla] € Z/AZ (@ € R?) for

(o o) (00 ( o) () ®

are given in Table 3, where u =1 + 7.
It follows from Table 3 that for ¢1,c € C,

(

10
wtr(c mod 4 if §= ,
cle) ) 0 0
0 0
wtr(c2)  (mod 4) if § = 01
Z Slalna(cy, c2) =
= , 01
acR? 2Re((c1,¢2)) (mod 4) if S = L o)
. . 0 3
2Re(i(c1,¢2)) (mod 4) if S = . ) :

\
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Table 3: The values of Slal

o) ) () () ) €) €) ) €) )

0 0 0 1 2 1 1 1 2 2

[
S

/\/o?/\
)
(e
—
[\]
o
[en]
—
—
V)
—
[\]

)
)

01 0 0 0 0 0 9 0 9 9 0
10
<0’> 0 0 0 0 0 0 9 9 9 0
—7 0

Thus, if C'is Type 11, then for each S in (10), we have
H is[a]nﬁ(01,62) —1.
acR?
Therefore, if we let Dg be the diagonal matrix with (@, @)-entry %1%, then
sweg® (Xa) = ) [ e TT Xo=0®) = swee (Xa).
c1,62€C geR? acR2

Since Dg, s, = Dg, Dg, for any S; = S}, Sy = 55 € Mat(2,Z[i]), we see that swec(Xz) is
invariant under Dg for all S = 5* € Mat(2, Z[i]).

Finally, as n is divisible by 4, swec(Xg) is invariant under i/. We have proved the
following.

Proposition 6.1. For any Type 11 code C' over R, the symmetrized biweight enumerator
swee(Xg) is invariant under the action of the matrices T, Pa, Dg,il, where A € GL(2,7Z][i))
and S = S* € Mat(2, Z[i]).

We now define the theta functions © { Z } (1) on Hy with characteristic [ Z ], a, b e
Z[i)? as follows:

a 11, 1. 1.
S) { b } (1) = Z e (§(n+§a) T(?’L+§CL) +§Re(b n)) ,
neZfi]?

where 7 € Hy, e(x) = exp(2mizx). The following basic properties are used in this paper.

Lemma 6.2. (i) © { ZZ ] (1) =0 { ; ] (7).

14



(i) © Zj_;: } () = e (L Re(b*r)) © [ ! } (7), where r, s € ZJi].
(i) © | } (‘7) = e (~ Re('a) - Re(b)) © { ; } (7)
(iv) © ! } (J-7) = —e (*Re(a*})) det(r)© [ 2 } (7).

(v) If g is of the form ( ,(4)1 (A*(‘))l > , A€ GL(2,Z][i]), then

o t]wmn-e] i ]m

Sll 512
521 522

@[Z]@'”:e(éa"%)@[g]<T>,

wherel;—b+5a+(1—i)<§n )
22

(vi) If g is oftheform([2 S),S(
0 Iy

) = 5* € Mat(2, Z[i]), then

Proof. These formulae can be derived from Lemma 2.1.1 (i), (ii), Lemma 2.1.2 (i), (x), (viii),
(ix) in [20] respectivly. See also pp. 7-9 in [12], Chap. IV, Sections 1 and 2 in [19]. O

By Lemma 6.2 (i), (ii), we see that the function © [g] (7) depends only on the class of

a

a in RZ. Thus we may define f;(1) = © {0] (27).

Lemma 6.3. (i) fz('1) = fa(7).

(i) fa(J-7) = det(r) D gepe Tapl5(T)-

(iii) If g is of the form ( 13 (A’?)l > , A€ GL(2,Z[i]), then fa(g-7) = fzeq(T)-

I S

(iv) If g is of the form ( 0 1L

), S = S§* € Mat(2, Z[i]), then fx(g- 1) = i f2(7).

15



Proof. (i) Follows from Lemma 6.2 (iii).
(ii) By Lemma 6.2 (iv), we have

=600 G

_ —det(%T)@ m =

= 2aet(r) 3 D7 el (b+ 2m) (b + 2m) + L Re(a*(b+ 2m)))

4
be R? meZ[i]?
— 2 det(r) S e(2 Re(ab) 3 e((m -+ sb)(2r)(m + o))
VR g e Gl o) WEmim T
be R2 meZli]?

=~ det(r) Y (<1 ()

4
be R?

= det(1) Y _ Tyzfs(r

beR?

(iii) Follows from Lemma 6.2 (v).
(iv) By Lemma 6.2 (vi), we have

fulg-T) = © m (27 +28) — © m (<102 25) L (27)) = e(%a*(QS)a)@ m (27).

where

2511
259

b:2Sa+(1—i)< )zo (mod 2).

Thus by Lemma 6.2 (ii), we have

falg-7) = e(%a*Sa)@ B] (2r) = is[a]fa(T)-

Let G be the subgroup of GL(10,QJi|) generated by the matrices
T, (detA*)Py (A€ GL(2,Z[i])),Ds (S =S5"¢€ Mat(2,Z][i])).

Theorem 6.4. If W (Xz;a € ﬁ) 18 a polynomial of degree n invariant under the group G,
then W (f«(7);@ € R?) is a Hermitian modular form of weight n for T.

Proof. By Lemma 6.3 (i), the function f(7) = W(fa(7)) satisfies (5). By [19, Chap. II,
Theorem 2.3], it is enough to check the transformation formula (6) for

s=4 (5 ) (6 5,
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where A € GL(2,Z[i]), S = S* € Mat(2, Z][i]).
For the first and third cases (of g), the assertions are easily obtained by Lemma 6.3 (ii),

(iv), respectively.

For g = <§ (A?)_l) with A € GL(2,Z]i]), we have, by Lemma 6.3 (iii),

)) 7" (det (A7) W (fa(T))
= (det(A")) "WHADEA( fo(7))
= (det(A") )" f(7).

This completes the proof. O

We remark that the above group G has order 737280 and Molien series
1
(1 —20)(1 — t10)(1 — £12)3(1 — 8)3(1 — 14)2
x (14 265 4+ 10t 4 244" + 53t%° + 1086%* + 192t + 302t + 420t% + 506¢*°
+ 540t + 527t% + 452t°% + 330t°° 4 206t + 108t%* + 455 + 1267 4 2¢7°)
=14+ 2t* + 85 + 10+ 271 4 21 4 82110 ...

Corollary 6.5. For a Type II code C' of the length n, swec(fz(7);@ € R2) is a Hermitian
modular form of weight n for I'.

Proof. In view of Proposition 6.1 and Theorem 6.4, it suffices to show that sweq(X4; @ € R?)
is invariant under the scalar matrices (det A*) I, where A € GL(2,Z[i]). This is obvious
since n = 0 (mod 4) and det A* € {£1, +i} which imply (det A*)" = 1. O

7 The Graded Ring of Hermitian Modular Forms and

Dimensions

We review here several known facts on the graded rings and add some remarks. Although
the content of this section consists of rather easy comments on the previously known facts,
there are several non-trivial points which have never been stated in the literature before.

/

,m") € Z*, we put

O,(7) = © [ ((11:;))77”;‘ } (7).

For m = (m

These theta constants 6, were used in Freitag and Nagaoka instead of our f,. It is known
that 6,,(7) does not vanish identically if and only if m is even, i.e. 'm'm” = 0 (mod 2).
First we explain relations between 6,, and f,.

17



Lemma 7.1. If we put M = {(0,0),(0,1),(1,0),(1,1)}, we have

1
trm

O (T) = Z fr+i(r+m’)(7—)€( 5 ).

reM

Proof. Put Ay = Z[i]?, Ay = (1 —4)Z[i]>. Then, A;/Ay = M, identifying M as a complete

set of representatives of (Z/27)?. Hence for any function h on A, we get

> h(n) =YY h(ny+r)

neA; réM na€Aa
as in Igusa [18]. Now for m = *(m’,m") € Z*, put

1

1 ) / 1 ) / ) "
il +Zm)+Re( ;thm ))-

5 m)'7(x + 5

o () = e(%(:{: +

Then, ny = (1 — i)z € Ay and r € M, we get

! 1 ) 1
m) + Re(% fng +r)m")

1+
2

1 1+i .,
§(n2+r+Tm) T(ng + 1+

. ’ . / . 1 .
= (z+ rrirem) Z(;+ o ))*T(a: S U i i Z(2+ = )) + Re(‘zm  + —; Ltrm

"

).

Hence taking the sum over A; and M, we get the relation of the lemma.

More concretely, we get

Ooooo = fo0 + fou T Juo + fuu
Oooor = fo.0 — Jou + Juo — fuu
Oooto = Joo + Sfou = Sfuo = Sfuu
Ooorr = Joo = Jou = Juo + Sfuu
Oor00 = 2(fo1+ fun),

010 = 2(for — fun),
tiooo = 2(f1,0+ fiu);
b1 = 2(fr0 — fiu)
Oi00 = 2(f11+ f14),
O = 2(fi1 — f1,)-

18



Nagaoka used the following notation.

1
T 1 Z 0X for any k with k=0 (mod 4),

mieven

Xs = (¢2—¢8)/30727

X0 = 277 H O,

X12 = 2_15 Z (9m19m29m39m49m59m6)27
fifteen
G2 = 119§ — 138240 x5 + 60825612 — 1o,

X116 = 2718 Z (0m19m29m30m4)47
fifteen

where the product for yio is over the ten even characteristics, the summation for yi, is
over the fifteen complements of syzygous quadruples and for x4 over the fifteen azygous
quadruples. We denote by A(I')* the ring of symmetric Hermitian modular forms.

Theorem 7.2 (Freitag [12], Nagaoka [21]). A(I')® is generated by 6 modular forms 1,
X8, X10, X12; &12, X16. These generators satisfy the following relation.

2(13xs + 6v%axa2 + 4032x3 — T2x16)° = (Yaxa + 12xsX12 + 36XT0)E12-

The relation above is the unique fundamental relation between generators, although this
fact is mentioned just as a conjecture in Nagaoka’s paper above. We give two different proofs
of this fact here. The first one is shorter and smart which we learned from Freitag. Since the
polynomial P of 6 variables which gives the above relation is irreducible, the ideal generated
by P is a prime ideal. Since the dimension of the variety ProjA(I")® is 4, the transcendental
degree of the graded ring A(I")®* must be 5. But there are only 6 generators, so the height of
the ideal p of the whole relation of generators must be one. It is trivial that the ideal p is a
prime ideal containing (P). If (P) # p, then the height of p is more than one by definition,
which is a contradiction. Hence all the relations come from P.

We give here another proof directly obtained from the definition without using the fact
that the ring is generated by the above 6 generators. For the proof, we need some results
on Siegel modular forms. We denote by Sy the Siegel upper half space of degree two and we
regard this space as a subset of Hy naturally. For any m € Z*, we define theta constants
U, (Z) of characteristic m on Sy by

1 a a a.b
Um(Z) = Z 6(5 “(p+ §)Z(p+ 5) + '(p+ 5)—):
PEZ2

where Z € S;. We denote by G4 or G the normalized Siegel Eisenstein series of weight 4
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or 6, respectively. We define two more Siegel modular forms

X = 272 [] 92,

mieven

Xy = 279 H (T Oy Dy Vo O O )

fifteen

where the first product is taken over 10 even characteristics and the second one over the
set, of complements of fifteen syzygous quadruples. It is well known that these 4 forms Gy,
G, X10, X12 are algebraically independent and generate the ring of Siegel modular forms of
even weights (cf. Igusa [17]).

For a Hermitian modular form F(7) of any I", we write the restriction of F to Sy by
F|S;y. Since Sp(2,Z) C T, the restriction F'|Sy of any F' € Ax(I')® is a Siegel modular form
of Sp(2,7Z) of weight k. Nagaoka has shown that

¢4|52 = G4, XS'SQ =0, X10|52 = X10, X12|52 = X2

£12] 92 = 2G} X16]S2 = 272371 (G4 X 12 — GeX1o).
Let P or @ be a polynomial of four or five variables respectively. Assume that

P (4, X10, X12: §12) + X8Q (Y1, X5, X10, X12:€12) = 0.

By restricting this relation to So, we get P(Gy, X19, X12,2G2) = 0. But Gy, X9, X12, Gs
are algebraically independent. Hence P = 0. So, we get

Q (¥4, X8, X10, X12,€12) = 0. By induction, we see ) = 0 and prove the algebraic independence
of five forms. Now, by Nagaoka’s relation, we see that x% is in A+ x16A4. So, all we should
do is to show that this is a direct sum. Again let P and () be polynomials of five variables.
Assume that

P(¢47X87 X105 X125 512) + X16Q(¢4, X85 X10, X12,§12) =0.

If we restrict this to Sy, then we get
P(G4,0, X10, X12,2G3) + 2723 (G X12 — G X10)Q(Gy, 0, X109, X12, 2G) = 0.

Since odd powers of G appears as —27237 G X10Q(Gy, 0, X109, X192, 2G2), this term should
be 0. So we get

P(G4, 0,X107X127 QGE) = Q(G47 07X107X127 QGE) = 0.

So both P and @) are divisible by the second variable, and we can divide the relation by
Ys. We can continue this process and by induction, we see that P = (Q = 0. Hence the
alternative proof is finished.
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The above theorem by Freitag and Nagaoka is described also as follows. The five forms
¥y, Xsy X105 X12, €12 are algebraically independent. If we put A = C[y, x5, X10, X12, &12], We
get

A(F)S =A ) XIGA,

where @ means the direct sum as modules. By the way, ys = (2 — 15)/3072 and Y6 is a
linear conbination of 114, ¥4th1a, ¥3, V3 Xs, YaX12, Xa in which the coefficient of 114 does not
vanish (cf. Nagaoka [21] p. 537). So, A(I')® is also generated by 1y, s, V12, X12, Y16, X10-
Nagaoka has shown that xs, x10, X12, X16 are cusp forms. Since the image on the boundary
of 14 and &5 are algebraically independent, we see that the ideal of cusp forms in A(T")* is
generated by xs, X10, X12, X16- 1f we put S(I')* = Ax(T')* N Sk(T"), the dimension formulae
of symmetric Hermitian modular forms and cusp forms are given easily by these facts as
follows.

Corollary 7.3.

o0 ' 1+t16
dim A, (0)** = :
2 Am A = - oy e

0 t8 th t12 tlﬁ _ tlS _ t20 _ t22 t30
Zdim Sk(T)t" = i +4 i 8 10 1272L
2 (1= (1 = (1 — £0)(1 = 12

We shall give another easy interpretation of the fundamental relation. Matsumoto [20]
and Hermann [15] treated also modular forms with characters. We put

144 ={gel;g=1; (mod (1+1))}.

We denote by v the character of T' obtained by v(g) = det(g) for g € T. For a group I"
such that I'(1 +14) C I" C T, we denote by Ay (I, v*)* the space of holomorphic functions
f which satisfy f(7) = f('7) and

f(g7) = f(r)det(cr + d)* det(g9)" (g € T(1+1)).
We know that det(g) = +1. Matsumoto [20] proved that the graded ring &2 A (I'(1 +

*)* is generated by algebraically independent 5 generators, e.g. 07100, 02011, #2000» G2000s

0?,,,. Also he wrote down the usual theta relations among 6% . Here we follow the notation

i),v

of Hermann [15] p. 118. Since there is a misprint in the expression of 63, in that page,
we reproduce the formulas. We put Wy = —0%,,, Wo = 02,11, Ws = 03500, Wi = —0200
W5 = 602,11, Ws = 02,40- Then the theta relations are given by

6
>0
i=1

and

9%001 = W1 + W3 + W57 0(2)001 = W1 + W2 + Wg,
9(2]110 = Wl + W5 + W67 03010 = Wl + W2 + Wﬁ.
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Now, Hermann gave the algebraically independent 5 generators of the graded ring of
symmetric modular forms @5 A (T, v*)*. Following his notation, we put

Yier = (AW + 2Wo i + 6Wiy + AWy + 2Ws )

where i = 1,...,6 and the indices are understood to be (mod 6). Then we have Wy, =
Yiyi + Yagi + Y5y and

9%001 =Y+ Y3+ Y5, 08001 =—(Yo+ Y5+Y3),
O =Ys+Ya+Ys, O =Yi+Ys+Yi

Obviously we get Z?:l Y; = 0. For any natural number k£, We put

6
S = Z YZk
i=1
We have s; = 0 and s;, € Agi(T',v*)*. Hermann proved that
@IZO:OAZIC(Fv /Uk)s = C[327 53, 54, S5, 86]-

Of course s;, (k =2,...,6) are algebraically independent (cf. [15]). Since v* = 1 for even k,
there is some overlap between this result and Freitag-Nagaoka's result.
Following Freitag [12] p. 35, we put

Ne = Z i(9m10m29m3)2'

sixty

where the summation is over 60 syzygous triples. Since dim Ag(I",det)® = 1, two forms
s3 and 76 are the same up to constant. Since ®(14]S2) = G§ where G} is the normalized
Eisenstein series of weight 6 of SLy(7Z) (cf. [12]), we see easily that 9s3/4 = g by calculationg
P(s5]S52). Now we put 1719 = 55/5 — 52 - 53/6.

Proposition 7.4. We have the following relations.

2773 - 5127
97730 = 224(1/)4X§ + 12xsx12 + 36X%0)7
3nemo = 22(W2xs + 61ax12 + 4032x2 — T2x16).

In particular the relation (nemi)? = nand, is nothing but the relation in Theorem 7.2.

Proof. Since all the above relations are the relations in Ay (I, v%)% = Ay, (1)® for k = 3, 5, 8,
we can show the relations, in principle, by rewriting everything by algebraically independent
variables Y; (i = 1,..., 5.) But since this is sometimes a nuisance, we try to give a shorter
proof based on other known things. The first relation of the above proposition is nothing but
what was shown in [21] pp. 543-545. By this relation, we can express xi2 by Y; (1 <i <5)

22



without writing all fifteen complements of syzygous quadruples in the definition of yis. It
is easy to write x2, by Y;. By Nagaoka’s relation, the right hand side of the second relation
above should be square. Since dim A;(I",v)® = 2, that should be the square of some linear
combination of s -s3 and s5. By calculating the restriction of these to the diagonal of Sy, we
can find the candidate. Once we find the candidate, we can check the second relation easily
by comparing expressions by Y; by computer. This proves the second relation. Finally, it is
clear from Nagaoka’s relation that the last relation holds up to sign. By restricting the right
hand side to Sy, we get 212 - 6G¢X 1. Since 16|52 = Gg, we must show that 7,0/S2 = 2 X1,.
The expression of Xy by 9% is known by Igusa [17] (IT) p. 397. On the other hand, by
definition we can write 739 by Y;, and we have 62 ]S, = 9% . So, it is an easy computer
calculation to get an expression of 119]Sy by 94. As in Igusa [17], we use yo = U4,
Y1 = 91005 Y2 = Vtoos ¥3 = =000 — Vo105 Y4 = —V1100 — Uo110 s a set of generators. These
are not algebraically independent, but the explicit relation at weight 8 is also known by
Igusa. We have

WilSs =yo +vya, WalSo=w2+ys. Ws|S = —yo—ys,
Wy|S2 = —yo, Ws5|S2 = —y1 — ya, Wi|S2 = 1.

Using these, it is not so difficult to show that
7710|52 = 213Xlo-

Hence we get the desired result. O

8 Hermitian Modular Forms Obtained from Codes

Now our task is to determine the corresponding Hermitian modular form for some of the
Type II codes. The simplest of all Type II codes is the Klemm code defined in [9]. The
Klemm code K,, of length n is defined as

K, = R(1,1,...,1) + RuP,,

where P, = {x € F}|wty(x) is even}. If n is divisible by 4, then K, is a Type II code [9].
Its symmetrized biweight enumerator is

uls
+ ha (X5, X1 X100 X100) + o (X7, X3, X7, X7),

where
1
hn(a,b,c,d) = 1((a+b+c+d)”+(a—b+c—d)"
+(@a+b—c—d)"+(a—b—c+a)").

The following proposition is immediate.
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Proposition 8.1. If n =0 (mod 4), then sweg, (fz;@ € R2) = 9,,.

For Type II codes of length at most 12 other than the Klemm codes, we directly compute
their symmetrized biweight enumerators by constructing all codewords. The theta constants
fa (a = (a1, az) € R?) have the following Fourier expansion:

fa(T) = Z c(a, o) exp2miTr(oT),

g

where o runs through the set
1
{ZA | A € My(Zi]), A= A" > 0}.

and

c(a,o) = Hx € 7Z[i)?

. ( a2 (a2 T )H
( |

x1+a1/2)(:c2+a2/2) |x2+a2/2|2

From this we can directly compute sufficiently many Fourier coefficients of swec( fz: @ € R2)
for each Type II code of length at most 12. Comparing the Fourier coefficients, we find an
expression of sweg (fq;@ € R?) in terms of Nagaoka’s generators. (Another way to do this
without Fourier coefficients is as follows. As we reviewed in the previous section, Freitag or
Nagaoka’s generators are defined by using 6,, and they belong to the ring generated by 62,
except for x19. On the other hand, the fundamental relations between 62, are completely
known by Matsumoto [20] as we saw in the previous section. Since each 0, is a linear
combination of f; as shown in the last section, it is rather a routine calculation to express
swee(fz(7);@ € R?) by Nagaoka’s generators, where we do not, use any Fourier coefficients.)
The results are tabulated in Table 4.
Therefore we obtain the following theorem.

Theorem 8.2. The algebra generated by the Hermitian modular forms of the form swec( fz(7)),
where C' runs through all Type II codes, contains the algebra

C[W, g, V12, P16, X12]-

Note that there is another generator for the algebra of Hermitian modular forms, namely;,
Y10- Since there is no Type II code of length 10, y19 can not be obtained as the image of the
symmetrized biweight enumerator of a Type II code. Even though y19 can not be obtained
from Type II codes, it is possible to express xip as a polynomial in the theta constants f,’s
by using Lemma 7.1. Note that from the Molien series of the group G given in Section 6,
we see that there is a unique invariant of degree 10 of G.

It is not known, however, whether x?, belongs to the algebra generated by swec(fa(7)).
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Table 4: Hermitian modular forms of weight 8 and 12

Code

Hermitian modular form

8.2] 2ds

[8,4]-esa

Aw; (i =1,...,15)
Aiz,16

B,

Cha (i # 20,22, 23, 24)
Chas (i = 20,22,23,24)
D1z, Diaggg, Diga

Diap

Ero;

Fip; (i=1,...,5)

EFE; (1=1,2,3,4)
EFy5, BB
DFEy;

Ui

(8¢5 + T3) /15

—3/493 + 9/4baibs — 1/ 2915 + 9216x12
—27/1693 + 51 /16415 — 1/21h15 + 921612
—21/161#;1’ +49/16¢4108 — 3 /4112 + 1612812
—1§ + 341hs — 12 + 2457612

—11/845 + 27/8hyrbs — th1o + 2457612
—21/1693 + 57/1694205 — 5/41b19 + 3456012
—3/21F + 15/44py1bg — 5/4ab15 + 3456012
V12

—5/44p} + 15/4barhs — 32412 + 4608012
—11/8¢3 + 31/8yibg — 3/2¢15 4 4608012
—23/169% + 63/16¢4105 — 3/2112 + 4608012
—11/8¢ + 33/8aths — 7/4012 + 5913612
Vi

(8vs + T7)1a/15

Vy)g
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Appendix 1

Here we give generator matrices of the 82 Type II codes of length 12. We denote the codes
obtained from the binary Type II code X4 by X1o; for X = A, B,C,...,G,EE and DE,
and we denote a generator matrix of a code C' by G(C'). To save space, we list the matrix
G(C) using the form gy, go, ... where g; is the j-th row of G(C).

G(A12,1) =1010010101ui, 01011010101%, 00u00000000%, 00010000000, 000010000010, 00000©00000w,
000000%000%0, 00000001000, 000000001010, 000000000w0w
G(A12,2) =1000000000u, 01000101u0u1, 0010000000, 000110100uiw, 000010000010, 00000100000,
000000%000u0, 0000000©000w
G(A12,3) =1001101010u4, 01000000040, 001001010212, 0002200000002, 00001000000, 00000100000,
000000%0000w, 0000000©001.0, 00000000w00w
G(A12,4) =10001111uluw, 010000001uuu, 00100000uulu, 00010000uuwl, 00000000100, 000001000100,
000000%00200, 0000000©0©00
G(A12,5) =10000000uiuu, 010000000w0¢, 001011110110, 000100001200, 0000©00000:.0, 000001000010,
000000%000u0, 0000000w0010
G(A12,6) =1000111110i4, 010110000u2:1, 001010000704, 000200000222, 000010000002, 0000000000,
000000%000%0, 0000000©0010, 00000000w0©0
G(A12,7) =1000000zu0uu, 0100000100¢0, 00100011100, 000100004200, 00001001000, 00000100001
G(A12,8) =1000011uvuui, 0100001uu011, 00100011w0u1, 0001001w10w1, 00001010001, 00000uOuuULY,
000000u0000w
G(A12,9) =1000000ui0uw, 010000u0uwi0, 001000uiuu00, 0001000uiuw, 000010u0uu0i, 0000011u00uw
G(A12,10) =1000110070u2, 010000000410, 001001111240, 000101001004, 00002000102, 000001002000,
000000%000w%0, 0000000©0010
G(A12,11) =1000000ui0uwu, 01000000100z, 001000000520, 00010110%210, 000010012000, 00000100000,
000000%000u0
G(A12,12) =10000001u0uw, 0100000uu0ul, 001000000710, 000101 1uuulu, 0000100ui0uw, 00000:0000u0,
000000©000u0
G(A12,13) =10000112uuluw, 0100000uuui0,00100100:400, 00010104000, 0000100uu201, 000001000200,
000000uuwuu00
G(A12,14) =100000vuluuu, 01000000uiuw, 0010000iu0uw, 000100uuuulu, 000010:0u0uu, 000001 uuuuui
G(A12,15) =100000uiuuuw, 010000010070, 0010000w 110w, 0001000uw 10w, 0000100uuw01, 000001110000
G(A12,16) =1000000104:0, 010000014040, 0010001211¢1,0001001111x1, 0000100100:%, 00000110010
G(Bji2,1) =10001111¢0%¢, 010000000111, 001000001101, 000100001110, 00001000u0uw, 00000u00uduw,
000000u0u0uw, 0000000uuOuY
G(Bi12,2) =100000u0uu01, 010000u0uu:0, 001000011100, 0001001011wu, 000010110100, 000001111000
G(Bi12,3) =100001120111, 0100000:000%, 001000001110, 000100101010, 000010101100, 00000::00000w,
000000u00uuw
G(C12,1) =100110000uui, 010001001 uiu, 001000110¢uw, 0000000000, 0000w000000%, 000001000010,
000000%00%00, 0000000©0©00, 00000000w0©0
G(C12,2) =100110100ui4, 010001100040, 001000111%iu, 000100000002, 000010000002, 000001000,
000000%000u0, 0000000©0©00, 00000000w100
G(C12,3) =10001100u0u1, 01000000iuuw, 00100000uulwu, 00010011u1u0, 0000w000000w, 00000©00000w,
000000%00200, 0000000©0u00
G(C12,4) =10001000100¢, 01001000uuil, 00100011210u, 00011100%201, 00001000000%, 00000600uduw,
000000%00100, 0000000©0©00
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G(C12,5) =10000001wuu0, 0100000uOiuu, 00100000uuui, 000101 1uuuiu, 0000100w10uw, 0000010000u0,
00000020000
G(C12,6) =10001100uu0i, 010000001 uuw, 001000001070, 0001001 1ui0u, 0000000000, 00000100000,
000000200200, 0000000©000
G(C12,7) =10000011%0u1, 010000100401, 00100000¢uuu, 00010000uulu, 000011 1uuuui, 00000u0uulu,
00000020000
G(C12,8) =10000101000¢, 01000100uiui, 0010010uu011, 0001010w:0ul, 00001110u0ui, 00000100000,
000000uvuuBYL
G(C12,9) =10001000100¢, 01001001 w4i1, 001000110020, 000111012071, 0000000000, 00000w00uLOu,
000000u0u0uw, 0000000100u0
G(C12,10) =100000u:00uwu, 010000u0ulu0, 001000uuuulu, 000100iuuuuw, 000010uu00ul, 000001 udiuul
G(C12,11) =10000001uu20, 0100000u210w, 00100000 i, 000101110012, 0000100wuiu0w, 000002000010,
000000%000u0
G(C12,12) =10001100000%, 01001000usui, 001010110uiz, 000100001200, 00001:000000w, 00000uw000uUY,
000000%000%0, 0000000©00u0
G(C12,13) =10000011000%, 01000012041, 0010000uiu0u, 00010000200, 000011142001, 00000w0u00uw,
000000©0000w
G(C12,14) =100000210u0u, 010000uu2:00, 001000200020, 0001001 vuuuwu, 000010u0iu0u, 000001uuu001
G(Ci2,15) =1000011u00u1, 0100000iu0uw, 00100000u:00, 0001000uiuw0, 0000100uu01uw, 00000w00000u,
000000%0000w
G(C12,16) =1000000zu0uwu, 0100000u1uwu0, 001000010007, 00010114100, 00001000200, 00000100000,
000000200010
G(C12,17) =100000u0i0uw, 01000000uuiu, 001000uu01u0, 00010010uu0u, 000010w0uOul, 000001010100
G(C12,18) =1000011iuuwu, 0100000uwuiu0, 001000020004, 000101120ui0, 000011121100, 00000u0uu0u0,
000000uuu0u0
G(C12,19) =10000001u0uw, 010000600200, 001000010007, 000100uu©010, 000010:0uuu0, 000001 uui0ul
G(C12,20) =1000000:1uiu, 0100000u1uii, 001000011001, 000100020017, 0000111200, 000001000w00,
000000200200
G(C12,21) =100000uui00u, 010000u1uu00, 001000001007, 0001001 uwu0u0, 0000101000:0, 00000101000
G(C12,22) =100001101000, 010000121141, 001001021210, 000101001001, 000010141ui1, 00000u0uuu00,
000000u0uluw
G(C12,23) =100000110001, 0100001:001uw, 0010000¢iuui, 000100101001, 000010z iuu0, 000001w00uin
G(C12,24) =1000001ui0zu, 0100001uww0zi, 001000101001, 00010000017, 00001001 wu0w, 00000101000
G(D12,1) =100010012111, 010001101¢uz, 00100001100z, 00010001 éiuw, 000010000010, 00000u00uuOU,
000000u0uuOu, 0000000uOuuY
G(D12,2) =100000i31iul, 010000u114ii, 0010001iuui0, 00010004040, 00001010uuil, 00000170010
G(D12,3) =10000001u0uw, 0100000u1u11, 00100010:070, 000100000:0u, 000010101uwwui, 000001i0uuil
G(D12,4) =10000101u0u1, 01000000uuiu, 001001071uu0, 0001011071wui, 0000100:1001, 00000w00uuOw,
000000%00100
G(E12,1) =11111111111¢, 020000000002, 0000000000, 000::0000000u, 0000000000, 00000100000,
000000%0000w, 0000000%000w%, 00000000%00w, 000000000w0w, 0000000000ww®
G(FE12,2) =100000000012, 01011111 1uui, 001000000102, 0000000000, 00002000000, 00000200000,
000000%0000w, 0000000©000w%, 00000000w00w
G(E12,3) =1011111111wi, 01000000001z, 0000000000, 0001:0000000w, 00001000000, 000001:00000u,
000000%0000w, 00000001000, 00000000w00w, 000000000w0w
G(E12,4) =100001luuuiu, 0100000000z, 001000001020, 00010001000, 000010000120, 0000000000,
000000%000u0
G(E12,5) =100000uuuuiw, 010000vuuunl, 001000uuuiuw, 000100uiuuuns, 000010iuuuun, 000001 vuiuuny
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G(E12,6) =100000100110, 01000010010:, 001000101100, 000101100100, 000010110100, 00000u0uULLY,
000000u00u00
G(FE12,7) =10000000001%, 0100111 1uwuui, 00100000100w, 00010000010w, 00001000000w, 00000100000,
00000020000%, 0000000©000w
G(FE12,8) =100000uuuuiu, 0100000000ui, 0010001000w0, 00010000100, 00001001000, 00000100010,
G(F12,1) =1000111100u1, 01000010uwii, 001010111201, 00011001220, 0000200002, 00000100u0u,
000000©0000w, 0000000u0uuw
G(F12,2) =1000000ui0uu, 010001 1uuuui, 00100001uu0u, 00010100uiul, 0000110u0usil, 00000w00000u,
000000u00uuw
G(F12,3) =1000010¢uiu0,0100010uu10¢, 0010010071uw, 0001010u0z1w, 00001110ui0u, 000001:000w00,
000000uuvuuuw
G(F12,4) =100000u1u0u0, 0100000u22:10, 00100012020, 000100101101, 00001002:10u2, 000001004 uw
G(F12,5) =100000¢uuuuu, 010000uw00uul, 001000uwiu0u0, 000100uu00zw, 000010uuiu00, 000001u0uiOu
G(F12,6) =100001011ui1, 0100000uu111, 0010011%¢01z, 0001000u111u, 000011000110, 00000u00uluw,
000000uu0uu0
G(F12,7) =100000uuiu00, 010000100110, 001000u1u0u0, 0001000uwuiii, 00001010uwuil, 000001¢u0lut
G(F12,8) =100000u01¢1u, 010000uuii01, 0010001 1uiié, 00010001:100, 000010¢11wil, 000001iuii0u
G(EE12,1) =100110000200, 010001100070, 001000011001, 0002:000002:00, 00002:00002:00, 000002:0000%:0,
000000%000%0, 0000000©000w, 00000000w00u
G(EE2,2) =10000000¢200, 010000001:100, 0010110000¢0, 000100110001, 00001:000002:0, 00000200000,
000000u0000%, 0000000w000w
G(EE12,3) =100001100¢00, 0100000200%0, 001000010010, 00010000002, 000010002:00:, 000001000200,
000000w00u00
G(EE12,4) =1000000:0100, 01000000100, 00100000700, 000100002:010, 00001000002, 000001200004
G(EE2,5) =100001100:00, 01000004001, 0010000:0011, 00010001100, 00001000:011, 000001:000x00,
000000u00u00
G(EE12,6) =10000000%00, 010000001200, 001000040011, 000100¢:0001, 000010110020, 000001200011
G(DEj2,1) =10110000000¢, 010011111110, 0000000000, 000100000002, 0000:00000%0, 000001000010,
000000%00010, 0000000©00%0, 00000000%0x0, 000000000u 10
G(DE12,2) =100000000z02, 010000000%0%, 001111111010, 0002:0000002:0, 00002:000002:0, 000002:00002:0,
000000%000%0, 0000000©00%0, 00000000w0u0
G(DEj2,3) =100010014000, 01000100010, 001001000101, 000101100z, 00001000000, 00000100000,
000000u00uuu, 0000000%©000
G(DEj2,4) =100001100200, 01000001 w0uw, 0010000uu0ui, 0001000u10uw, 0000100uu01u, 000006000:00,
000000u00u00
G(DE12,5) =1000110000:0, 01000011210%, 001000000101, 000100001200, 0000220000020, 000001000020,
000000u00%00, 0000000w000
G(DEj2,6) =10011000000¢, 010001111210, 001000000120, 000100000002, 0000w:000000%, 000001000010,
000000u00020, 0000000©00%0, 00000000w0x0
G(DEj2,7) =10000000¢0%0, 01000000020, 00100100100, 000101000101, 000011120:0u, 000001:000%00,
000000uu0u0u
G(DE12,8) =100000020:.00, 010000020300, 001000%:010uw, 0001001020us, 00001010u0uw, 00000120u01w
G(DE2,9) =100000000¢0u, 010000000%04, 001011112010, 0001000010%0, 00001000000, 00000100000,
000000200010, 0000000w00u0
G(DE12,10) =1000000¢00%0, 010000010040, 00100110%10u, 000100000%01, 000010001200, 000001000%00,
000000u00u00
G(DEq2,11) =1000011000:0, 010000010200, 0010000000, 00010001 wu0u, 000010010001, 000001:0000u:0,
000000200010
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G(DE12,12) =10000000:0u0, 01000000x0:0, 0010000000, 000100720000, 000010%10u0u, 00000100001
G(G12,1) =100000u4iu10,0100001%111%, 001000u10i1u, 000100éiu01wu, 00001071¢1ui, 0000010iuuii

Appendix II

Here we give generator matrices of the 21 Type II codes of length 16 and minimum Lee
weight 8. We denote the codes obtained from the binary Type II code C' by C; and we
denote a generator matrix of a code C; by G(C;). To save space, we list the matrix G(C;)
using the form ¢y, go, ... where g; is the j-th row of G(C}).

G(C811) =100000001¢uuulls, 01000000uuun11:0, 0010000071i001:¢, 0001000000u0ilui,

G(C821) =10000100101¢0111, 01000111000141:0, 001001110111%0u1, 000100101111%iuwu,
0000100111010z, 0000000000u0uu0, 000000%0000uu©00, 00000001w000uu0u0,
00000000200u00uw, 000000000w00u0uw, 0000000000u00UUL

G(C822) =10000001047i0114, 01000000022:17001, 0010000017000 1%, 0001000010102210,
0000100000%71120, 0000010114:10101, 0000001 10u07iuuw, 0000000w000u0u0u,
00000000u00uu0u0

G(C823) =10000000011¢30u1, 01000001 13120400, 001000011417uwiz, 000100011%i01010,
000010010¢ululiu, 000001000¢0uw 107, 000000110101100u, 0000000w0000uulu,
00000000uu0000uw

G(C831) =100000110001020u, 010000101 1474111, 001000110110140z, 0001001111001101,
00001010101101%1, 0000010000u%¢01z, 00000000002 00uw, 00000001000uw0u0,
00000000%0%000uw, 000000000w00uuOw

G(C832) =1000000011¢31011, 010000007 zuuwul 0w, 001000000¢:07:0w, 0001000001:0u1u0,
000010000¢010¢uwu, 000001002072111¢, 00000010u310010z, 00000001 u1uu0llw

G(C833) =1000000010¢01%0u, 01000000001%101, 0010000001:010uw, 000100000uw 00,
0000100011720020, 000001000020u111, 00000010720ui:.00, 0000000122010110

G(C834) =100000007011047u, 010000001¢04:2:01, 00100000uui1111%, 0001000010110114,
00001000%¢01%100, 000001007110¢¢1¢, 0000001001110wu0, 00000001 uiuiuuiO

G(C835) =100000011010u10%,0100000111001141, 001000100117%.004¢, 000100011 1uluwuiO,
000010101100¢10w, 0000011011¢42010, 00000010000u 1010, 000000010000uuu0,
00000000u0uuu000, 000000000w000uUwL

G(C836) =100000001001121%, 010000000144712.0, 0010000010101%41, 000100001 uuwuilii,
000010000¢7101uz, 00000100u171uilu, 0000001011007u11, 00000001%4:407u0

G(C84;1) =100000011iu0uuu0, 0100000101444101, 0010000101110111, 0001000011100u w0,
000010010¢7043:1, 000001010¢414110, 000000101 luuuiud, 0000000u0uwu00u00,
00000000uuOuulun

G(C842) =100000000u1luulu, 01000000w0107ui0, 00100000110¢4:41, 0001000007 1uw010,
0000100020100u 1%, 0000010002100u41, 0000001020120110, 000000014¢117101

G(C843) =100000000¢17101%, 0100000100207141, 001000010u0iuuui, 000100000::1:u01,
0000100110%0¢01%, 000001001¢0¢11%z, 0000001010¢1¢14¢, 0000000u0uuOuOuw,
00000000u00u0ulOuw

G(C844) =10000000071¢0iu, 0100000001 vuuuli, 00100000u0uuluii, 00010000uu0i00:1,
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G(C851) =10000000001%107w, 0100000041010101, 0010000010uu:070, 0001000001uuulul,
00001000711000¢%, 00000100%101uuul, 0000001070¢uluuw, 00000001010101uw

G(C852) =1000000011111010, 010000000uiuuuli, 00100000uui1111u, 0001000011:1140z,
00001000%100104%, 0000010072112020, 00000010u0uiuuzl, 000000017200uil

G(C853) =1000001111u1u01z, 01000000004i¢ius, 001000001140¢7¢1, 0001001001w001:1,
000010011112000z, 0000011101%21000, 0000002000uu0uuL, 0000000100000,
00000000u0u00u©0, 000000000uu0u0u0

G(C854) =10000000101%101%, 010000001¢141140, 0010000011%010¢, 00010000111%:104,
00001000%10001%%, 00000100u11uluiz, 0000001010012011, 00000001¢4200u 17

G(C855) =100000000%0¢4¢uz, 0100000011141011, 00100000%1004z4¢, 0001000010uu0:01,
0000100020%20%7u, 0000010007120z, 000000101100¢ 10w, 000000017 uulitun

G(C856) =10000000000uu:1%, 01000000101 uiuuwu, 00100001151i:000, 000100000u:i7i0%,
0000100111720201, 0000010110¢0u0%1, 0000001011100x11, 0000000100000,
00000000u000uuu0

G(C857) =100000001014¢0uz, 010000000101115w, 00100000%40101:1, 0001000010¢0iu 17,
000010000z12u220, 0000010021721007, 0000001012%20210, 0000000122201101
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