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Abstract

Recently there has been interest in self-dual codes over finite rings. In this note,
g-fold joint weight enumerators and g-fold multi-weight enumerators of codes over
the ring 7Z;, of integers modulo k are introduced as a generalization of the biweight
enumerators. We investigate these weight enumerators and the biweight enumerators of
self-dual codes over Zj. The biweight enumerator of a class of binary codes, introduced
in this note, is also studied. We derive Gleason-type theorems for the corresponding
biweight enumerators with the help of invariant theory.



1 Introduction

The conditions satisfied by the biweight enumerators of binary Type I codes and Type 11
codes were studied in [7] and [5], respectively. Using invariant theory, a basis for the space
of invariants, which the biweight enumerator for such codes belongs, was also given. In this
note, g-fold joint weight enumerators and g-fold multi-weight enumerators of codes over the
ring Z;, of integers modulo k are introduced as a generalization of the biweight enumerators.
We investigate these weight enumerators and the biweight enumerators of self-dual codes
over Zj. The biweight enumerator of a class of binary codes introduced in this note is also
studied. Using invariant theory, we derive Gleason-type theorems for the corresponding
biweight enumerators.

We begin with some definitions. A code C' of length n over Z; is an additive subgroup
of Zi. Let v = (x1,...,2,) and y = (y1,...,y,) be two elements of Z;. We define the
inner product of z and y on Z; by =z -y = z1y; + -+ + ¥, (mod k). The dual code
C+ of C is defined as C*+ = {x € Z}| v -y = 0 for ally € C}. The elements of C are
called codewords and the Hamming weight of a codeword zx is the number of its non-zero
coordinates. A matrix whose rows generate the code C'is called a generator matrix of C'. C'
is self-dual if C' = C+. A code C is formally self-dual if the codes C' and C* have identical
Hamming weight distributions. Self-dual codes are formally self-dual, but there are formally
self-dual codes which are not self-dual. A binary self-dual code is Type II if all codewords
have weight divisible by four, and Type I if there is at least one codeword of weight = 2
(mod 4). Binary formally self-dual codes are even if all codewords have even weights and
odd if there is at least one codeword of odd weight.

If A and B are codes of length n with v € A and w € B define:

i(v,w) = the number of r with v, = 0 and w, = 0,
Jj(v,w) the number of r with v, = 0 and w, # 0,
k(v,w) = the number of r with v, # 0 and w, = 0,
[(v,w) = the number of r with v, # 0 and w, # 0,
where v = (v1,v2,...,v,) and w = (wy,ws,...,w,). The joint weight enumerator of the

codes A and B is given by:

Japla,b,c,d) = Z Z (00 pi(v.w) k(vw) gllvw)

vEA weEB

If A = B then the weight enumerator J4 4 is called the biweight enumerator of A.

2  Multi-Weight Enumerators of Self-Dual Codes

In this section, we give a generalization of biweight enumerators of codes over Z;. We call
these weight enumerators g-fold joint weight enumerators. MacWilliams relations for these
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weight enumerators are given, and we study the conditions satisfied by g-fold joint weight
enumerators of self-dual codes over Z;.

Definition. Let A;, As,..., A, be codes of length n over Zj;. The g-fold joint weight

enumerator of Ay, Ao, ..., Ay is defined as follows:

jAl,...,Ag (gja with a € Fg) — Z H xana(ch...,cg)j

C1EAL,...,cg€Ay ae]Fg

where ¢; = (¢j1,...,¢jn), nalc1,...,¢,) = Hila = (En,.... ¢}, and g7 = 1 if ¢j; # 0
and ¢j; = 0 if ¢;; = 0. Here (z, with a € F9) is a 29-tuple of variables with FJ, that is
(500,...,0,0, Zo,...,0,15 20,...,1,05 - - - ,931,...,1,1)-
Remark. Sometimes we denote Jy, . a, (z, with a € F) by NI (%0,..0y---+T1,..1) OF
T s,y (Ta)-

We now give the MacWilliams relations for g-fold joint weight enumerators, beginning
with some notations. Let A; be either A; or A}. Then

oA Ai) = { 1 if A = AL

H:<1 k;—1>‘
1 -1

Theorem 1 The MacWilliams relations for the g-fold joint weight enumerator of codes

Let

Ay, ..., Ay over Zy is given by

1
jA],...,/fg (l‘a) - |A1|6(A1,A1) .. |Ag|5(Ag7Ag)

A g g A 7, ()
s Ag\La

Proof. It is sufficient to show

|Al|jAl,...,Al,l,Al{AlH,...,Ag () =(I®-0I® l?h RI® - @1)Ta,,..4...A,(Ta),

i.e., A is AlL and for [ # ¢ we have A; = A, where T is the identity matrix. Let n; be the
k-th primitive root of the unity and let

Sas (v) = 1 ifve At
AL\Y) = 0 otherwise.

Then

(LHS) = |Al|jAl,...,Al,l,AIL,AHl,...,AQ (2a)



= |Al| Z Z H xZﬂ(clr"vdlv"'uCQ)

ClEAL 1€ AI1,C141€ A1 15:Cg€Ag die A aclF)

= A Z Z d41(v) H e (CLy-1C1-1,05C1 4 15---1Cg)
1

Cly++3C1—15Cl415--+,Cg 'UEZZ ae]Fg
_ vy xna(cl,...,cl_l,v,cl+1,...,cg)
E : § : § : Mk I | a
Clye+yCl—1,Cl414--+5Cg veZ" €A ae]Fg
_ v 10 (C1 5451 1,U,Cl 4 15-++5Cg)
- 77 xa
Clyee0yClyeeyCg UEZ aEFg
- > n e [ s
M C1,i"""Cl—1,i Vi C141,i""Cg,i
C1yeesCly-rnyCqg (Ul,---ﬂ)n)ezz 1<i<n

— H U'Lclzx -
2 : 2 : M Cli"Cl—1,i Vi Ci41,i"""Cgi

ClysClyeenCq 1<0<n \; €7,

na(cly sCly 759)
Z H Z alvx v
U a1...a;_1Va4q --- Qg
yelFs

ClyClyeCy a=(ay,...,ap,...,ag vy,

_ a;v . g
— jAl,...,Al,...,Ag ( Z Ny Tay @1 VA4 .. Ago with (a'la N P ag) € FQ)

’UEZk
- (]®"®[®H®]®"®I) jAl,...,Al,...,Ag(xa)
— (RHS),

since we have the following identity

(SAJ_ |A|Z77

ceA

O

Remark. The above theorem, when g = 1, is the well-known MacWilliams relations for
Hamming weight enumerators, and the case g = 2 was shown in [1].

Joc....c(x,) is the generalization of the biweight enumerator and is called the g-fold
multi-weight enumerator. Of course, the case g = 2 is the biweight enumerator. For binary
codes, these weight enumerators are defined in [4] and [8], and called the g-fold weight
enumerators and g-th weight polynomials, respectively. The corresponding MacWilliams
relations for binary codes were also given in [8].

We investigate the group generated by the 29 by 29 matrices which fix the g-fold multi-
weight enumerator of a self-dual code C' over Z;. Consider the g-fold multi-weight enumer-
ators Jo, .c(Tyg, Tyyy - -+, Typy ) Where y; € F9, yo = (0,...,0) and yoo_; = (1,...,1). By
Theorem 1, Jo,. .o(Tyos Tyrs - - - Tyyy_,) is invariant under the 29 matrices (1/VEH)' ®---®
(1/v/kH)?s (j; = 0 or 1) obtained from Theorem 1.

Moreover, suppose that the weight of y; is the same as y;. Then it follows from the



definition of the weight enumerators that
Je..., C(xyovxyla ) $y2971) =Je.,., C’(‘Tym cees Ty s Ty Tyygs o s Tyy g5 Ly Tyjigs ey my2971)'

-1 . . . . .
There are >.7_; (i) such permutation matrices derived from interchanging z,, and z,, for

each i and j. These permutation matrices fix Jo. c(@yy, Ty, - - - Typy_, ) and we denote the

set of such matrices by Pj.
Therefore we have the following:

Theorem 2 The g-fold multi-weight enumerator of a self-dual code C over Zj, is invariant
under the group generated by the matrices (1/NVEH)Y' @ --- @ (1/vVEH)s and Py.

Remark. See Lemma 3 and Proposition 4 for examples to illustrate the above theorem.

3 Biweight Enumerators of Self-Dual Codes over Z;

In this section, we study some properties of the biweight enumerator of self-dual codes over
Zy. The biweight enumerators of self-dual codes are invariants of a group of substitutions.
We investigate this group.

Lemma 3 Let C be a code over Zy, then
jC,C(aa ba c, d) - jC,C'(aa c, ba d)

Proof. Follows from Theorem 2. O

By Theorem 2, the biweight enumerators of self-dual codes over Z;, are held invariant by
the following four matrices:

1000 1 k=1 k=1 (k—1)?
0010 1|1 -1 k-1 —(k=1)
k) = k)= —
Qolk) 0100 AR =7l ko1 4 —(k—1)
0001 1 -1 -1 1
10 k=1 0 1 k=10 0
1{o0o1 0 k-1 1|1 -1 0 o
k)= — k) = —
01 0 -1 0o 0 1 -1

Note that Q1(k) = Q2(k)Qs(k).

If C is a self-dual code over Zy, of length n, then |C|? = k™ so either k is a square or n
is even. Hence, if k is not a square, the length of a self-dual code must be divisible by 2 and
so the biweight enumerator is held invariant by the diagonal matrix Q4 (k) ;=—L



In addition, it was shown in [3] that if there is a prime p = 3 (mod 4) such that p
sharply divides k, then the length of a self-dual code over Z, must be divisible by four.
In this case, the biweight enumerator is also invariant by the diagonal matrix Qs(k);; = i
where 7 is the complex number with 2 = —1.

Proposition 4 If k is a square then the biweight enumerator of a self-dual code over Zy
is invariant under the group Hy(k) =< Qo(k), Q2(k), Q3(k) >, which has order 8. If k is
a non-square, then the biweight enumerator of a self-dual code over Zj is invariant under
the group Ho(k) =< Qo(k), Q2(k), Qs(k), Qs(k) >, which has order 16. If there is a prime
p =3 (mod 4) such that p sharply divides k, then the biweight enumerator of a self-dual
code over Zy is invariant under the group Hi(k) =< Qo(k), Q2(k), Q3(k),Qs(k) >, which
has order 32.

Proof. We consider only the order of each group. It is easy to see that Q(k)? = Q3(k)? = I,
Q2(k)Qs(k) = Q3(k)Qa(k), Qo(k)Q2(k)Qo(k) = Qs(k), where [ is the identity matrix. Thus
the group Hi(k) is isomorphic to the dihedral group of order 8 for every k. Since Q4(k)
and Q5(k) are diagonal matrices, the orders of the groups Hy(k) and Hs(k) are 16 and 32,
respectively. O

The biweight enumerator of a self-dual code belongs to the ring of polynomials fixed by
the group of substitutions. It is possible to find explicit generator polynomials for this ring.
For any finite group G of complex m by m matrices, the Molien series ®(\) is given by
a(N) = 15 Xgec g gy Where |G| is the order of G, det stands for determinant, and [ is
the identity matrix. The number of linearly independent homogeneous invariants of degree
d is given by the coefficient of A% in the Molien series.

Proposition 5 For every k, we have

1+ \°
(I)H1(k)()\) = (1_)\)(1_/\2)2(1_>\4) — 1+)\+3)\2+4)\3+8)\4+/
1+ M
Prm(A) = SOy = 143X\ 8AT 160+ 2005 + -+,
144Xt 4 3)8
P = ﬁ = 14+ 8\ + 20X + 72012 + 145010 + ..,

Proof. By direct calculation, we have

1
SN = D T
et (T = Ag)

geH 1 (k
14+ A
(L=X)(1—=A?)2(1 — )\4).




Since Hy(k) = {a,—a|a € Hy(k)}, we have

Cu,0(A) = % {@mmO) + 2w (=N}
1+ A4
S UEESTE

Similarly, we have that
1+ 4A% 43X

Dy (1) (A) = =)

O

As examples, we determine a basis for the space of invariants, which the biweight enu-
merator for self-dual codes over Z, and Zs belongs.

Theorem 6 The biweight enumerator of a self-dual code over Z4 is an element of the ring
R4 Q) 6473R4

with Molien series

14+ X3

=14+ NF3N AN 810N +---
V0= 22— M) + A4+ + + + 4

where Ry is the ring Cles 1, €42, fa2,€44] and

eq1 = a+b+c+d,

esr = a*+3b%+3c* +9d%,

Ji2 = ab+ ac — b* + 3bd — ¢ + 3cd — 6d?,

ess = a*+12/17a% + 12/17ac + 36/289a%d + 54/17ab* + 108/289a%bc + 324 /289abd

+54/17a%c? + 324/289acd + 486/289ad* + 108/17ab* + 324/289ab’c + 972/289ab*d

+324/289abc”® + 1944/289abed + 2916/289abd” + 108/17ac® + 972/289ac*d

+2916/289acd? + 2916/289ad” + 81/17b* + 324 /289b%c + 972/289bd + 486 /289b%c?

+2916/289b%cd + 4374/289b%d? + 324 /289bc” + 2916 /289bc*d + 8748 /289bcd?

+8748/289bd> + 81/17c¢* 4 972/289¢3d + 4374/289¢%d* + 8748/289cd® + 6561 /289d*,
€43 = a® — a®b — a®c — a®d + 3ab® — 2abc — 2abd + 3ac® — 2acd + 3ad?® + 5b°

—b%c — b*d — bc? + 6bed + 15bd* + 5¢® — ¢*d + 15cd? + 21d°.

Proof. We sketch the proof. The biweight enumerator of a self-dual code over Z, is
invariant under the group H;(4) in Proposition 4, which has order 8. Using Magma we
found the generator polynomials of this ring. Indeed, the structure of the direct sum in the
ring follows from the Molien series in Proposition 5. a



The coefficient of A% in the Molien series gives the number of linearly independent homo-
geneous invariants of degree d. It was shown, in [2], that there are exactly two inequivalent
self-dual codes of length 4. Thus unfortunately the set of biweight enumerators of all self-
dual codes over Z, can not generate the above ring Ry @ e 3R,.

Corollary 7 The biweight enumerator of a self-dual code over Zs (Fs) is an element of the
ring
Rs @ f54R;5

with Molien series

L+ A*
(1= A2)2(1 =A%)

=1+ 327 48X\ +16A° 4+ 2008 4- 4702 4 ...

where Ry is the ring Cleso, f5.2, 952, €5.4] and

esa = a®+4b* + 4% + 1642,

fs.2 = ab+ac—b*+4bd — ® + ded — 8d°,

gso = ad+bc—2bd —2cd+ 2d°,

esa = a*+8/13a%b +8/13ac + 16/169a°d + 48 /13a%b* + 48/169a%bc + 192/169a%bd

+48/13a*c® + 192/169acd + 384/169a%d* + 128/13ab” + 192/169ab’c + 768/169ab’d
+192/169abc? + 1536/169abed + 3072/169abd? + 128/13ac® + 768/169ac’d + 3072/169acd?
+4096/169ad® + 128/13b* 4 256/169b%¢ + 1024 /169b%d + 384/169b%c* + 3072/169b%cd
+6144/169b%d* + 256/169bc® + 3072/169bc?d + 12288 /169bcd” + 16384/169bd® + 128/13¢*
+1024/169c%d + 6144/169c*d? + 16384/169cd® + 16384/169d*,

fsa = a’b+aic+4/13a°d — 1/2a*b* + 12/13a%bc + 22/13a*bd — 1/2a*c* + 22/13acd
—8/13a2d? + 3ab® + 22/13ab’c + 114/13ab*d + 22/13abc® — 32/13abed + 40/13abd>
+3ac® + 114/13ac?d + 40/13acd® + 192/13ad® — 7/2b* + 38/13b%c + 100/13b%d
—8/13b%c% + 40/13b%cd — 232/13b%d? + 38/13bc® + 40/13bcd + 576 /13bed® — 64/13bd?
—7/2¢* +100/13¢c*d — 232/13c%d* — 64/13cd® — 896/13d".

Similarly one can easily determine the ring of polynomials fixed by the group for £ = 3
and k > 6, so we omit giving explicit generator polynomials to save space.

4 Biweight Enumerators of Binary Codes

In this section, we introduce two classes of binary linear [2n, n| codes with respect to biweight
enumerators.

4.1 Bi-Formally Self-Dual Codes

Binary self-dual codes are divided into two classes, namely Type I codes and Type II codes.
Biweight enumerators of these two classes were characterized in [7] and [5], respectively.

8



Binary formally self-dual codes are divided into two classes, namely even formally self-dual
codes and odd formally self-dual codes. Recall that a formally self-dual code and its dual
code have identical Hamming weight enumerators. We say that C' is a bi-formally self-dual
code if C' and C* have identical biweight enumerators. In addition, such a code is an even
bi-formally self-dual code if all Hamming weights are even, and an odd bi-formally self-dual
code otherwise. C is called isodual if C' and C* are equivalent.

Lemma 8 If C' is self-dual or isodual then C' is bi-formally.

Proof. Since C' = C*+ or C and C+ are equivalent, C' and C* have the identical biweight
enumerators. O

Most of the known formally self-dual codes are such codes. An even formally self-dual
code of length 10 which is not equivalent to its dual code was given in [6]. We have verified
that the code is not a bi-formally self-dual code.

In this subsection, we investigate biweight enumerators of even bi-formally self-dual codes
and odd bi-formally self-dual codes.

Theorem 9 The biweight enumerator of an odd bi-formally self-dual code is invariant under
the group < Qo(2), Q1(2), Q4(2) > which has order 8. The biweight enumerator of a binary
odd bi-formally self-dual code is an element of the ring

R2 D 2'272R2

with Molien series

1+ A2

m:1+5)\2+14)\4+30)\6+55)\8+91)\10+...’

where Ry is the ring Cleas, fo2,g2,2, has| and

€2 = a® + 2bd + 2cd — 2,

fo2 = ab+ac—bd — cd,

Go2 = b —2bd+ c* — 2cd + 2d?,
hoy = bc—bd—cd+ d°,

loo = ad—bd—cd+ d?.

Proof. Since Jec(a,b,c,d) = Jor or(a,b,c,d) and Jec(a,b,c,d) = Jocla, ¢, b,d), the
biweight enumerator of an odd bi-formally self-dual code C' is invariant under the matrices
Qo(2) and Q1(2). Since |C| = |C1], the length must be even. Thus the biweight enumerator
is also invariant under Q4(2). The group is the elementary Abelian group of order 8. Using
Magma we obtained its Molien series and determined the ring. O



We investigate the conditions satisfied by the biweight enumerators of even bi-formally
self-dual codes. We need additional matrices for such codes.
Let C be an even bi-formally self-dual code of length n then

n = 0 (mod 2) (1)
k(v,w)+l(v,w) = 0 (mod 2), (2)
jw,w)+l(v,w) = 0 (mod 2), (3)
where v, w € C'. Since n is even, we have
i(v,w) =jv,w) = k(v,w) =1l(v,w) (mod 2). (4)

The corresponding matrices to conditions (1) and (4) are

-1 0 0 0 1 0 0 0
0 —1 0 0 0 —1 00

Fi= 0 0 —1 0 = 0 0 10|
0 0 0 -1 0 0 0 1
10 0 0 100 0

B— 0 1 0 0 P 0 10 0
0 0 —1 0 0 01 0
0 0 0 1 0 00 —1

Corollary 10 The biweight enumerator of an even bi-formally self-dual code is invariant
under the group < Qo(2), Q1(2), F1, Fy, F3, Fy > which has order 128. The biweight enumer-
ator of an even bi-formally self-dual code is an element of the ring

R, @ ey Ry

with Molien series

1+ MO

=1 2 4 4 6 8 1 10
T~ LA BN 8T 10X +

?

where R is the ring Cljao, €24, fou, €28] and

Joa = @+ +E+d%

€24 = a* + 2a2d? + 8abed + b* + 202 + ¢ + d47

foa = a’b? + a?c? — 2/3a*d® — 8/3abed — 2/3b%c? + b2d* + 2d?,

e2s = a®+28/65a% + 28/65a°c* + 28/65a°d* + 336/65a°bed + 14/13a*b* + 84/13a*b*c?

+84/13a*b?d* + 14/13a*c* + 84/13a*c*d* + 14/13a*d* + 224/13a°b%cd + 224/13abc*d
+224/13abed® + 28/65a2b° + 84/13a%b*c? + 84/13ab*d? + 84/13ab*c*
+504/13a?b*c*d® + 84/13ab*d* + 28/65a°c® + 84/13a*c*d? 4 84/13a*c*d*
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+28/65a%d® + 336/65ab°cd 4 224/13ab*c*d + 224/13ab>cd® + 336 /65abc’d + 224 /13abc*d’
+336/65abcd® + b® + 28/65b5¢% + 28 /65b°d? + 14/13b*c* + 84/13b*c*d? + 14/13b*d*
+28/65b%c% + 84/13b%c d* + 84/13b%c*d* + 28/65b%d® + ¢® + 28/65c°d>
+14/13c*d* + 28/65¢%d® + dB,

e26 = a®+15/17a*? + 15/17a*c? + 15/17a*d® + 120/17a%bed + 15/17ab* + 90/17a%b?c?
+90/17a%b?d* + 15/17a%c* 4 90/17a*c?d* + 15/17a%d* + 120/17ab’cd + 120/17abc*d
+120/17abed® + b° + 15/17b*c* + 15/176*d* + 15/17b%c* + 90/176*c*d? + 15/17b*d*
+c® +15/17¢*d? + 15/17c2d* + d°.
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