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Abstract

We express the weight enumerators of self-dual and doubly even (Type
II for short) codes of length 24 with a specified basis. As a consequence,
we present some congruence relations among the weight enumerators.
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1 Introduction

The main theme of this paper is the weight enumerators of Type II codes of
length 24. We shall briefly describe the properties of the weight enumerators
and the relationship between coding theory and number theory. The weight
enumerators of Type II codes carry the invariance properties under the action
of a finite group. In fact, the invariant ring over C under the action of the
unitary reflection group of order 192 can be generated by the weight enumerator
of Type II codes [7]. This theorem is generalized in [15, 10]. If we substitute
certain theta functions into the weight enumerators of Type II codes, we can
get Siegel modular forms [3, 14]. This modular form can be also obtained as
follows. For a Type II code C ⊂ Fn

2 , we construct an even unimodular lattice
1√
2
ρ−1(C) where ρ : Zn → (Z/2Z)n = Fn

2 [5]. This correspondence between

codes and lattices serves to be of great importance for the development each
other. Anyway, the theta function of the lattice 1√

2
ρ−1(C) is the same as the

modular form obtained from the weight enumerator of the code C.
In the paper [8], they studied the theta series of even unimodular lattices of

length 24. Among other results, they show that for an even unimodular lattice
L with Coxeter number h, it holds

ϑ
(3)
L = (E

(3)
4 )3 + 24(h− 30)Y

(3)
12 + 48(h− 30)2X

(3)
12

+24(h− 30)(2h2 + 48h+ 1571)F12

where E
(3)
4 , Y

(3)
12 , X

(3)
12 are suitable Siegel modular forms in genus 3 with integral

Fourier coefficients and F12 is Miyawaki’s cusp form of weight 12. In particular
F12 vanishes under the action of Siegel’s Phi operator. The purpose of this note
is to give the similar results in coding theory. There exist 9 Type II codes of
length 24 up to equivalence, denoted by Ci (i = 1, 2, . . . , 9). We can attach the
number hi for Ci as in the case of lattices. We show, for i = 1, 2, . . . , 9,

W
(2)
Ci

= W
(2)
C9

+ 6(4hi − 7)X24 + 24(2hi + 3)(4hi − 7)Y24

1



where X24, Y24 are linear combinations of the weight enumerators in genus 2
and Φ(X24) = x4y4(x4 − y4)4, Φ(Y24) = 0. The Φ applying to polynomials
corresponds to Siegel’s Phi operator.

2 Preliminaries

Let F2 = {0, 1} be the field of two elements. We sometimes regard it as
F2 ⊂ Z. The vector space Fn

2 is equipped with the inner product

u · v = u1v1 + · · ·+ unvn

for u = (u1, . . . , un), v = (v1, . . . , vn) ∈ Fn
2 . The weight wt(u) of u ∈ Fn

2 is the
number of non-zero coordinates of u. A subspace C of Fn

2 is called a (linear)
code of length n. The dual code of C is defined by

C⊥ = {u ∈ Fn
2 : u · v = 0, ∀v ∈ C}.

If C = C⊥, then C is said to be self-dual. If wt(u) is a multiple of 4 for all
u ∈ C, then C is said to be doubly even. In this note, we deal with the self-dual
and doubly even codes. We call them Type II codes for short.

We give some codes with generator matrices (i.e., rows generate each code).
We put

dn :


111100 . . . 0000
001111 . . . 0000

. . .

000000 . . . 1111


for n = 4, 6, 8, . . . , and

e7 :

0111100
0110011
1101010

 ,

e8 :


11110000
00111100
00001111
10101010

 .

We denote by g24 the binary Golay code of length 24. The code g24 is a unique
Type II code of length 24 which contains no element of weight 4, see [5].

It is known that a Type II code of length n exists if and only if n ≡ 0
(mod 8). Two codes are said to be equivalent if one can be obtained from the
other by permuting coordinates. Under this equivalence, classification of Type
II codes is completed up to n = 40, see [12, 13, 4, 1]. Type II codes of length 24
are presented at Table 1. The 7th code in that table is the binary Golay code
g24.

For a code C, the weight enumerator of C in genus g is defined by

W
(g)
C (xa : a ∈ Fg

2) =
∑

u1,...,ug∈C

∏
a∈Fg

2

xna(u1,...,ug)
a
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Table 1: Classification of Type II codes of length 24.

i 1 2 3 4 5 6 7 8 9

Components d212 d10e
2
7 d38 d46 d24 d64 g24 d16e8 e38

hi
5
4 1 3

4
1
2

11
4

1
4 0 7

4
7
4

where na(u1, . . . , ug) = ♯{i : a = (u1i, u2i, . . . , ugi)}. In genus 1, we may use
x, y instead of x0, x1. If C is of length n, we have the usual weight enumerator

W
(1)
C (x, y) =

∑
u∈C

xn−wt(u)ywt(u).

The number hi is obtained as the number of elements of weight 4 of each com-
ponent divided by the dimension. This number can be read off from the weight
enumerator given below, that is, a coefficient of xn−4y4 divided by n.

In the following, we may write W
(g)
C for simplicity. For codes C and C ′, we

have W
(g)
C⊕C′ = W

(g)
C W

(g)
C′ .

For a column vector a ∈ Fg
2, we define a map

Φ : C[xa ∈ Fg
2] → C[xa′ : a′ ∈ Fg−1

2 ]

xa 7→


xa′ if a =

(
a′

0

)
,

0 if a =

(
a′

1

)
.

It holds Φ(W
(g)
C ) = W

(g−1)
C (cf. [15, 9]).

It is known that the ring generated over C by the weight enumerators of
Type II codes in genus g coincides with the invariant ring of some finite group,
see [7, 6, 15]. In particular, a basis of the vector space generated over C by the
weight enumerators of Type II code of length 24 in g = 1, 2 is

W
(1)
C9

,W
(1)
C7

and
W

(2)
C9

,W
(2)
C7

,W
(2)
C5

.

For completeness, we add here the weight enumerators in genus 1.

W
(1)
d4

= x4 + y4,

W
(1)
d6

= x6 + 3x2y4,

W (1)
e7 = x7 + 7x3y4,

W
(1)
d8

= x8 + 6x4y4 + y8,

W (1)
e8 = x8 + 14x4y4 + y8,

W
(1)
d10

= x10 + 10x6y4 + 5x2y8,
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W
(1)
d12

= x12 + 15x8y4 + 15x4y8 + y12,

W
(1)
d16

= x16 + 28x12y4 + 70x8y8 + 28x4y12 + y16,

W
(1)
d24

= x24 + 66x20y4 + 495x16y8 + 924x12y12 + 495x8y16 + 66x4y20 + y24.

The coefficient of xn−4y4 is the number of elements of weight 4 and each com-
ponent of a Type II code of length 24 has the same number, that is, nhi. For
the Type II codes of length 24, we mention

W
(1)
C5

= x24 + 66x20y4 + 495x16y8 + 2972x12y12 + 495x8y16 + 66x4y20 + y24,

W
(1)
C7

= x24 + 759x16y8 + 2576x12y12 + 759x8y16 + y24

and

W
(1)
C5

=
11

7
W

(1)
C9

− 4

7
W

(1)
C7

.

3 Results

We start with the case g = 1. Let ∆ = x4y4(x4 − y4)4. The vector space of the

weight numerators of Type II codes in genus 1 is spanned by W
(1)
C9

and ∆. By
direct calculation, we get the following identity: For i = 1, 2, . . . , 9, we have

W
(1)
Ci

= W
(1)
C9

+ 6(4hi − 7)∆.

Using this, we obtain

Proposition 1 (1) Let i and j be distinct integers in 1, 2, . . . , 8. If 4hi ≡ 4hj

(mod m) for an integer m, then

W
(1)
Ci

≡ W
(1)
Cj

(mod 6m).

(2) Let Cα, Cβ be Type II codes of length 24 with hα < hβ. Then we have

W
(1)
Ci

=
hi − hβ

hα − hβ
W

(1)
Cα

+
hi − hα

hβ − hα
W

(1)
Cβ

for i = 1, 2, . . . , 9.

Proof. We need only to prove (2). Set

W
(1)
Ci

= aW
(1)
Cα

+ bW
(1)
Cβ

.

Applying (1), we get a system of equations{
a+ b = 1,

6(4hα − 7)a+ 6(4hβ − 7)b = 6(4hi − 7).

Since the determinant of the matrix

(
1 1

6(4hα − 7) 6(4hβ − 7)

)
is −24(hα −

hβ) 6= 0, we get a and b. This completes the proof of Proposition 1.
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Table 2: Possible m in (1) of Proposition 1.

h2 h3 h4 h5 h6 h7 h8

h1 1 2 3 6 4 5 2
h2 1 2 7 3 4 3
h3 1 8 2 3 4
h4 9 1 2 5
h5 10 11 4
h6 1 6
h7 7

We add a few words on (1) of Proposition 1. For i < j, we denote by m the
number presented at the (hi, hj)-entry in Table 2. Then (1) of Proposition 1 says

that (W
(1)
Ci

−W
(1)
Cj

)/6m is in Z[x, y]. One can say more. By direct calculation,

we observe that the resulting (W
(1)
Ci

− W
(1)
Cj

)/6m contains a monomial with
coefficient 1 or −1.

We consider the case g = 2. The vector space of the weight enumerators of

Type II codes of length 24 in genus 2 is spanned by W
(2)
C9

,W
(2)
C7

,W
(2)
C5

. Let

F = aW
(2)
C9

+ bW
(2)
C7

+ cW
(2)
C5

.

Now we consider the action of Φ on F . In order to make our discussion smooth,
we set

X =
1

42

(
W

(2)
C9

−W
(2)
C7

)
,

Y = −11

7
W

(2)
C9

+
4

7
W

(2)
C7

+W
(2)
C5

.

Since Φ(W
(g)
C ) = W

(g−1)
C , we have

Φ(F ) = aW
(1)
C9

+ bW
(1)
C7

+ cW
(1)
C5

= aW
(1)
C9

+ bW
(1)
C7

+ c

(
11

7
W

(1)
C9

− 4

7
W

(1)
C7

)
=

(
a+

11

7
c

)
W

(1)
C9

+

(
b− 4

7
c

)
W

(1)
C7

.

Then

Φ(F ) = 0 ⇔ a+
11

7
c = b− 4

7
c = 0

⇔ a = −11

7
c, b =

4

7
c

⇔ F = cY.
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Also

Φ(F ) = x4y4(x4 − y4)4 ⇔ a+
11

7
c =

1

42
, b− 4

7
c = − 1

42

⇔ a =
1

42
− 11

7
c, b = − 1

42
+

4

7
c

⇔ F = X + cY.

We have thus obtained the following proposition.

Proposition 2 (1) Φ(F ) = 0 if and only if F = cY for some constant c.

(2) Φ(F ) = ∆ if and only if F = X + cY for some constant c.

We introduce the following polynomials of Z[xa : a ∈ F2
2] from [11]:

X24 = X − 1

44
Y,

Y24 =
1

243 · 11
Y.

Polynomials WC9
, X24, Y24 form a basis of the vector space of the weight enu-

merators of Type II codes of length 24. By Proposition 2, we have

Φ(X24) = Φ(X)− 1

44
Φ(Y )

= ∆

and

Φ(Y24) =
1

243 · 11
Φ(Y )

= 0.

The coefficient c(hi) of Y24 in

WCi
= W

(2)
C9

+ 6(4hi − 7)X24 + c(hi)Y24

can be obtained by direct calculation. Therefore we have the following theorem
corresponding to that of theta series in [8] mentioned in Introduction.

Theorem 3 (1) Φ(X24) = ∆ and Φ(Y24) = 0.

(2) For i = 1, 2, . . . , 9, we have

W
(2)
Ci

= W
(2)
C9

+ 6(4hi − 7)X24 + 24(2hi + 3)(4hi − 7)Y24.

Corollary 4 Let i and j be distinct integers in 1, 2, . . . , 8. If 4hi ≡ 4hj (mod m)
for an integer m, then

W
(2)
Ci

≡ W
(2)
Cj

(mod 6m).

In order to state the next corollary, we introduce the Lagrange polynomial
ℓϵ(x). For ϵ ∈ {α, β, γ}, we set

ℓϵ(x) =
∏

µ∈{α,β,γ}
µ ̸=ϵ

x− xµ

xϵ − xµ
.
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Corollary 5 Let Cα, Cβ , Cγ be Type II codes of length 24 with hα < hβ <

hγ . Then for i = 1, 2, . . . , 9, the weight enumerator W
(2)
Ci

has the following
expression:

W
(2)
Ci

= ℓα(hi)W
(2)
Cα

+ ℓβ(hi)W
(2)
Cβ

+ ℓγ(hi)W
(2)
Cγ

.

Proof. We set

W
(2)
Ci

= aW
(2)
Cα

+ bW
(2)
Cβ

+ cW
(2)
Cγ

.

We apply the expression in Theorem 3 to each W
(2)
Cα

,W
(2)
Cβ

,W
(2)
Cγ

, we get a system
of equations

A

a
b
c

 =

 1
c0(hi)
c1(hi)


where

A =

 1 1 1
c0(hα) c0(hβ) c0(hγ)
c1(hα) c1(hβ) c1(hγ)


and

c0(h) = 6(4h− 7),

c1(h) = 24(2h+ 3)(4h− 7).

Since detA = −4608(hα − hβ)(hα − hγ)(hβ − hγ) 6= 0, we can solve the system
of equations and get the result. This completes the proof of Corollary 5.

There are two classes of Type II codes of length 16. A remark is that their
weight enumerators are distinct in g = 3. This remark is important in number
theory and we only mention a reference [14]. Inequality of the mentioned weight

enumerators in g = 3 leads to W
(3)
C8

6= W
(3)
C9

. Combining this with h8 = h9, we
see that Theorem 3 (2) can not be extended to the case g = 3.
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