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Abstract. The theta map sends code polynomials into the ring
of Siegel modular forms of even weights. Explicit description of
the image is known for g ≤ 3 and the surjectivity of the theta
map follows. Instead it is known that this map is not surjective
for g ≥ 5. In this paper we discuss the possibility of an embedding
between the associated projective varieties. We prove that this is
not possible for g ≥ 4 and consequently we get the non surjectivity
of the graded rings for the remaining case g = 4.

1. Introduction

One of the main theme in the theory of modular forms is to determine
explicitly the structure of the graded rings of modular forms in terms of
generators and relations. This study started systematically with Igusa
about 50 years ago.

In several fundamental papers he determined the structure of the
graded ring of Siegel modular forms of degree two, cf. [12], [13] and
[15] using different methods.

First he applied his study [11] of moduli theory of the (hyperelliptic)
curves of genus two in view of binary sextics, cf. [11]. The second
method is based on, what he calls, a ’fundamental lemma’ [14]. Us-
ing successively invariant theory of a finite group to the fundamental
lemma, he determined the ring of modular forms of degree two, cf.
[13]. In the third method [15], he defines the ρ homomorphism from
a subring of the ring of modular forms to the projective invariants of
binary forms. Then classical invariant theory is used to obtain the ring
of modular forms.

Few years later in [4], Freitag used a more analytic method (see also
[8]): he did a careful analysis of the vanishing locus of a distinguished
modular form. This allowed him to reduce the problem to the study
of graded ring related to lower dimensional varieties.
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After this, only a few other cases were determined in the case of
Siegel modular forms of degree two, because of the difficulty of the
subject, cf. [9] and [6].

Tsuyumine, cf. [28], was the first one who determined the generators
of the graded ring of Siegel modular forms of degree three. He got the
result passing through a lot of difficulties. Essentially he used a mix
between Igusa’s third method and Freitag’s method and deeply used
Shioda’s result about the structure of the ring of binary octavics, cf.
[27].

Later Runge used Igusa’s second method for determining the graded
ring, in fact using the result of [23], he was able to determine the struc-
ture of a graded ring of Siegel modular forms of degree three related
to a subgroup of finite index of the integral symplectic group. Then he
applied Igusa’s going down process.

Runge’s method had also the advantage of relating the ring of Siegel
modular forms with the ring R3 of code polynomials of genus three.
In fact he proved that the ring of modular forms is isomorphic to
R3/〈J (3)〉. Here J (3) is the difference of the code polynomials for the
e8 ⊕ e8 and d+

16 codes.
Moreover he proved that this map exists for any genus g and has

the image contained in the graded subring of modular forms of even
weight. Also with this restriction, it can be easily shown that this map
is not surjective for large g.

But there was always the hope that this map was surjective for other
mall values of g. In fact, since the structure of the ring of code polyno-
mials is easier to determine than the structure of the ring of modular
forms, one would like to apply Runge’s method to higher g.

However, a previous result of the second named author, cf. [22],
implied that the map is not surjective when g ≥ 5. Still it was open
in the case g = 4. Moreover if one restrict the attention to code
polynomials of degree divisible by 8 and hence to Siegel modular forms
of weight divisible by 4, the negative result in [22] can be by passed.

However in [18] was observed that as a consequence of the results
of [3] or [1] and [17] this map could not be sujective if g ≥ 6. In fact
dimension of the space of modular forms of weight 12 is greater than
the dimension of space of weight enumerators of degree 24.

Meanwhile in genus 4 there were some partial results in [5] and in
[18] leading toward a possible surjectivity.

In this note we show that the map

Th2 : R(8)
g → M(Γg)

(4)
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is not surjective if g ≥ 4.

Here M(Γg) stands for the graded ring of Siegel modular forms of
degree g and the exponents (8) and (4) mean that we consider only
code polynomials of degree divisible by 8 and modular forms of weight
divisible by 4 that are related to theta series.

2. Notation and Context

Let g be a positive integer. We denote by Γg := Sp(g, Z) the integral
symplectic group; it acts on the Siegel upper-half space Hg by

σ · τ := (Aτ + B)(Cτ + D)−1,

where σ =

(
A B
C D

)
∈ Γg. An element τ of Hg is called reducible if

there exists σ ∈ Γg such that

σ · τ =

(
τ1 0
0 τ2

)
, τi ∈ Hgi

, gi > 0, g1 + g2 = g;

otherwise we say that τ is irreducible.

Let k be a positive integer and Γ be a finite index subgroup. A
multiplier system of weight k/2 for Γ is a map v : Γ → C∗, such that
the map

σ 7→ v(σ) det(Cτ + D)k/2

satisfies the cocycle condition for every σ ∈ Γ and τ ∈ Hg (note that
the function det(Cτ + D) possesses a square root).

We shall write f |r/2σ for det(Cτ + D)−k/2f(σ · τ).
With these notations, we say that a holomorphic function f defined

on Hg is a modular form of weight k/2 with respect to Γ and v if

f |r/2σ = v(σ)f ∀σ ∈ Γ,

and if additionally f is holomorphic at all cusps when g = 1.

We denote by [Γ, r/2, v] the vector space of such functions. We shall
consider the graded ring

M(Γ, v) :=
∞⊕

k=0

[Γ, k, vk].

We omit the multiplier if it is trivial.

For w ∈ C write e(w) = e2πiw. For τ ∈ Hg and column vectors
z ∈ Cg, a, b ∈ Zg, we define the theta function by

θ

[
a
b

]
(τ, z) =

∑
m∈Zg

e

(
1

2
(m + a)′τ(m + a) + (m + a)′(z + b)

)
,
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where X ′ denotes the transpose of X.
For any a ∈ Zg, the function θr[a] defined by

θr[a](τ) = θ

[
a/r
0

]
(rτ, 0)

is called an r-th order theta-constant. They depend only on a modulo
r.

For any even positive integer r, we denote by Γg(r, 2r) the subgroup
of Γg of elements σ satisfying

σ =

(
A B
C D

)
≡ 12g mod r,

(B)0 ≡ (C)0 ≡ 0 mod 2r,

where (X)0 means to take the vector determined by the diagonal coef-
ficients of a square matrix X. If we drop the second condition, we get
the principal congruence subgroup Γg(r) of level r.

The functions θr[a] belong to [Γg(r, 2r), 1/2, vr] for a suitable multi-
plier vr.

We denote by ~θr = [θr[a]]a∈Zg/rZg the vector of r-th order theta-
constants.

We define rg variables Fa for a ∈ Zg/rZg. Let C[Fa : a ∈ Zg/rZg]
be the polynomial ring in these variables and C[Fa : a ∈ Zg/rZg](2) the
subring of even degree. For even r, there is a theta map

Thr : C[Fa : a ∈ Zg/rZg](2) → M(Γg(r, 2r), χ)

induced by sending F to ~θr and the ring M(Γg(r, 2r), χ) is the integral
closure of Im Thr inside its quotient field when r is greater than or
equal to 4, cf. [14] and [16]. Since we are considering modular forms of
integral weight, the multiplier χ is a character. It is trivial if and only
if 4 divides r, otherwise χ2 is trivial.

This theorem is called the ‘fundamental lemma’ of Igusa.

The second named author proved the same conclusion in the case
r = 2, cf. [23] and [19] for the theta map

Th2 : C[Fa : a ∈ Fg
2]

(2) → M(Γg(2, 4), χ)

Also in this case χ2 is trivial. Let Γ∗
g(2, 4) be the kernel of χ. This is ob-

viously a subgroup of index two in Γg(2, 4), described by the condition
tr(A − 1g) ≡ 0 (mod 4), cf. [19].

To the map Th2 is associated a projective map

th2 : Hg/Γg(2, 4) → P2g−1.
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Here with the bar we denote the Satake compactification of the modular
variety. This map has been studied in details in [23]. In this paper
is first proved that the map is generically injective, then with an ad
hoc argument is proved the injectivity. This second part appears at
the author incomplete, so at the moment we can say that the map is
generically injective. However Runge’s results in [19] imply that when
g ≤ 3, the map is injective.

We know that the group Γg is generated by the elements J =

(
0 −1
1 0

)
and t(S) =

(
1 S
0 1

)
for integral symmetric S. Moreover it acts on the

r-th order theta-constants. On the second order we recall the action of
the generators, cf. [19] for details. For these elements, we have

~θ2| 1
2
t(S) = DS

~θ2 and ~θ2| 1
2
J = ±Tg

~θ2,

where

DS = diag(ia
′Sa)a∈Fg

2
and Tg =

(
1 + i

2

)g (
(−1)(a,b)

)
a,b∈Fg

2
.

The ±1 comes from the choice of square root. The group Hg =
〈Tg, {DS}S〉 ⊆ GL(2g, C) is of finite order and the representation φ :

Γg → Hg/± 1 defined by ~θ2|σ = ±φ(σ)~θ2 defines Γ∗
g(2, 4) as its kernel.

Hence the map th2 results to be Γg/Γg(2, 4) equivariant. We observe
that we consider the Γg(2, 4) quotient of Γg, since being the map pro-
jective, twisting by character we do not produce any changement in
the image.

We see that an Hg-invariant polynomial goes to a level one Siegel
form of even weight under the map Th2. We denote by Rg the Hg-
invariant subring of C[Fa : a ∈ Fg

2]
(2) and Rm

g the vector space of
Hg-invariant homogeneous polynomials of degree m, thus we have a
theta map

Th2 : Rg → M(Γg)

whose image is contained in M(Γg)
(2), i.e., in the subring of modular

forms of even weight.

We want to consider also the action of the group Γg on the fourth
order theta-constants. It is useful to consider this action on different
representatives that we are going to define.

A characteristic m is a column vector in Z2g, with m′ and m′′ as first
and second entry vectors. We put

e(m) = (−1)(m′,m′′)
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and we say that m is even or odd according as e(m) = 1 or −1. Here
we denoted by (· , ·) the standard scalar product

We consider the theta function

ϑm(τ, z) = θ

[
m′/2
m′′/2

]
(τ, z).

This is also called even or odd according if m is even or odd. We recall
from [10] the following formula:

θ

[
m′/4

0

]
(4τ, 4z) =

1

2g

∑
m′′

e((1/2)(m′,m′′))ϑm(τ, 2z).

Thus we can consider the theta-constants ϑm := ϑm(τ, 0) as the en-

tries of the vector ~θ4. We remind that in this case the entries at odd
characteristics are 0.

On these entries the action of Γg is simpler, in fact it is monomial,
cf. [10] or [12].

Moreover we recall the addition formula relating theta-constants of
the second order with theta-constants of the fourth order:

ϑ2
m =

∑
a∈Fg

2

(−1)(a,m′′)θ2[a + m′]θ2[a].

3. The map th2

In this section we shall consider with more details the map th2. In
particular we shall consider its injectivity on some special subloci.

We recall that in [26] has been proved that the map is injective along
the hyperelliptic locus.

Here we are interested in the locus of the completely reducible peri-
ods, i.e. to the points τ that are Γg conjugated to points of the type

λ1 0 . . . . . . 0
0 λ2 0 . . . 0

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
0 . . . . . . 0 λg

 λi ∈ H1.

For doing this we need to recall and improve some results in [23].

To any characteristic m is associated a character χm of the group
G′ = Γg(2, 4)/Γg(4, 8). We set G = G′/ ± 1, then the group of charac-

ters Ĝ is spanned by the characters χm associated to the even charac-
teristics.
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For any point τ0 ∈ Hg/Γg(4, 8) we consider the subgroup Hτ0 of Ĝ
spanned by all characters χmχn such that the products ϑmϑn do not
vanish at τ0. Moreover we set Stτ0 be the subgroup of G′ generated by
all σ fixing the point τ0.

We recall from [23] the following

Theorem 1. The following statements are equivalent:
(i) τ0 is a reducible point.
(ii) Stτ0 is different from ±1.

(iii) Hτ0 is a proper subgroup of Ĝ.

We need to mention some facts about this theorem. In the proof
the author uses the theorem stating that the map θ2 is injective. This,
in general, is not necessary in fact theta-constants are used only to
separate points in the same fibre of the covering map

π : Hg/Γg(4, 8) → Hg/Γg(2, 4).

Moreover, since Stτ0/± 1 and Hτ0 are dual we have that the number
of points in the fiber of π(τ0) is equal to the order of Hτ0 .

Finally, cf.[25] also, we have the following

Corollary 2. Let τ0 ∈ Hg/Γg(4, 8). It is Γg equivalent to a point of
the form τ that are Γg conjugated to points of the type

λi1 0 . . . . . . 0
0 λi2 0 . . . 0

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
0 . . . . . . 0 λik


with all λij ∈ Hgj

irreducible and g1 + g2 + · · · + gk = g if and only if

Stτ0 has order 2k.

Let τ0 be a completely reducible point, already in diagonal form.
It is immediate to verify that Stτ0 is the subgroup of G′ that is the
image of σ ∈ Γg(2, 4) that are diagonal matrices, i.e. B = C = 0,
A = D = diag(±1,±1, . . . ,±1). Obviously it has order 2g.

Proposition 3. The map th2 is injective along the completely reducible
points.

Proof. Assume that
th2(τ) = th2(τ

′)

for a completely reducible point τ and another point τ ′. Here we can
take τ in diagonal form. By addition formula, the same first order
theta-constants vanish on τ and on τ ′. Thus τ ′ is completely reducible
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and conjugate to τ by an element σ in the group Γg(2) that fixes the
characteristics of the first order theta-constants. But now Γg(2) acts
inducing different characters on the θ2

m. Requiring that the character
has to be the same, we have that σ ∈ Γg(2, 4).

Another interesting fact about the completely reducible points is the
following

Proposition 4. Let τ0 be a generic completely reducible point. If σ ∈
Γg stabilizes τ , i.e.

στ0 = τ0,

then σ ∈ Γg(2, 4).

Proof. Without any loss of generality we can assume τ0 in diagonal
form with τ0 = x0 + iy0, with x0 and y0 > 0 diagonal. If σ stabilizes τ0

we have
Aτ0 + B = τ0(Cτ0 + D).

From this we get

Ax0 + B = x0(Cx0 + D) − y0Cy0

and
Ay0 = y0(Cx0 + D) + x0Cy0.

We can choose x0 and y0 in such form that for any σ ∈ Γg

Ax0 − x0(Cx0 + D) + y0Cy0

is not an integral matrix, hence necessarily we have B = 0. Moreover
from the first equation we can choose y0 >> 0, so that C = 0, hence
we have

Ax0 = x0D and Ay0 = y0D.

These conditions for generic diagonal matrices imply A = D diagonal
and integral. Thus we get the desired result.

We conclude this section describing non-embeddability of Hg/Γg(2, 4).
First we recall that in the paper [24] has been proved the following

result.

Proposition 5. When g ≥ 4, the map th2 is not an immersion at the
completely reducible points.

In fact the second author computed explicitly the dimension tg of
the tangent spaces at the generic points completely reducible points of
Hg/Γg(2, 4). Since there is a misprint in the formula, we reproduce it
here:

tg = g +

(
g

2

)
+

1

2

g∑
h=3

(
g

h

)
(h − 1)!,
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in which the third term is read as zero when g = 1, 2.
We recall the idea of the proof of this formula. Let K be the subgroup

of GL(g, Z) formed by the diagonal matrices and Sg(C) be the set
of symmetric matrices, thus a neighborhood of a generic completely
reducible point τ0 ∈ Hg/Γg(2, 4) looks like a neighborhood of 0 ∈
Sg(C)/K.

Moreover the ideal m0 ⊂ C[Xi,j]
K is generated by the monomials

X11, X22, . . . , Xgg, and Xi1,i2Xi2,i3 . . . Xin,i1

with 1 ≤ i1 < i2 < · · · < in ≤ g.

These monomials are also a basis of m0/m
2
0. Thus the dimension of

the tangent space is the number of such monomials that is exactly tg.
When g ≥ 4, we have tg > 2g − 1 and hence we cannot have an

immersion of a neighborhood of the point τ0 into P2g−1. We have thus
proved that Hg/Γg(2, 4) cannot be embedded in P2g−1 when g ≥ 4.

4. The map Θ2

In this section we prove our main result. As we mentioned before,
the transformation formula of theta-constants implies that the map θ2

is Γg/Γg(2, 4) equivariant. Therefore we have a map

Th2 : Rg → M(Γg)

whose image is contained in M(Γg)
(2).

From Runge’s results, cf. [19], [20] and [21], we have that the map
is surjective onto M(Γg)

(2) when g ≤ 3.

In general a map Th2 induces a projective map

Θ2 : Hg/Γg → Proj(Rg).

As a consequence of Runge’s results it is an immersion when g ≤ 3.
For higher g, we have the following

Theorem 6. Θ2 : Hg/Γg → Proj(Rg) is not an embedding when g ≥ 4

Proof. We consider the action of Kg = Γg/Γg(2, 4) at a generic
completely reducible point τ ∈ Hg/Γg(2, 4). The result of Proposition
4 implies that the group acts freely on τ . Let x = θ2(τ), since the map
is equivariant the group acts freely also on P2g−1.

Let π : Hg/Γg(2, 4) → Hg/Γg and φ : P2g−1 → P2g−1/Kg, the maps
that make commutative the following diagram
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Hg/Γg(2, 4)

π

²²

// P2g−1

φ
²²

Hg/Γg
// P2g−1/Kg.

We set τ ′ := π(τ) and x′ = φ(x). Since the action of the group was
free we have that the dimension of the tangent spaces at τ ′ and at x′ are
equal to the dimension of the tangent spaces at τ and x, respectively.
Hence, in particular, they have different dimension, thus Θ2 is not an
immersion.

As an immediate consequence, using basic fact from [7], page 92 ,
Exercise 3.12, we have that

Corollary 7. When g ≥ 4, for any k the homomorphism

Th2 : R(4k)
g → M(Γg)

(2k)

is never surjective.

We interpret this corollary in a restricted case, which is of another
interest. To do this, we denote by C[ϑΛ] the ring of theta series of all
even unimodular lattices Λ where

ϑΛ(τ) =
∑

v1,v2,...,vg∈Λ

∏
i,j

e((vi, vj)τij/2).

Note that an even unimodular lattice exists if and only if the rank of a
lattice is a multiple of 8 and that the weight of the corresponding theta
series is a half of the rank. We recall that for n large enough, cf. [2]
or [29], the space of modular forms [Γg, n] is spanned by theta series
provided that 4 divides n. Our final result in this paper is, specializing
the previous corollary to the case k = 2,

Corollary 8. When g ≥ 4 the homomorphism

Th2 : R(8)
g → C[ϑΛ]

is not surjective for infinitely many degrees.
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Inst. Steklov. (LOMI) 86 (1979), 82–93, 190.



ON THE IMAGE OF CODE POLYNOMIALS UNDER THETA MAP 11

[4] Freitag, E., Zur Theorie der Modulformen zweiten Grades, Nachr. Akad. Wiss.
Göttingen, II. Math.-Phys. Kl. 1965, 151-157 (1965).

[5] Freitag, E, Oura, M., A theta relation in genus 4, Nagoya Math. J. 161 (2001),
69–83.

[6] Freitag, E., Salvati Manni, R., The Burkhardt group and modular forms,
Transform. Groups 9 (2004), 25–45.

[7] Hartshorne, R. Algebraic Geometry, GTM 52, Springer- Verlag, New York
Heidelberg Berlin 1977.

[8] Hammond, W. F., On the graded ring of Siegel modular forms of genus two,
Amer. J. Math. 87 1965 502–506.

[9] Ibukiyama, T., On Siegel modular varieties of level 3, Internat. J. Math. 2
(1991), no. 1, 17–35.

[10] Igusa, J., Theta functions, Die Grundlehren der mathematischen Wis-
senschaften, Band 194. Springer-Verlag, New York-Heidelberg,1972.

[11] Igusa, J., Arithmetic variety of moduli for genus two, Ann. of Math. (2) 72
1960 612–649.

[12] Igusa, J., On Siegel modular forms of genus two, Am. J. Math. 84(1962), 175-
200.

[13] Igusa, J., On Siegel modular forms of genus two (II), Am. J. Math. 86(1964),
392-412.

[14] Igusa, J., On the graded ring of theta-constants, Amer. J. Math. 86 (1964),
219–246.

[15] Igusa, J., Modular forms and projective invariants, Amer. J. Math. 89 (1967),
817–855.

[16] Mumford, D., Tata lectures on theta III, with collaboration of M. Nori and P.
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