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Abstract

In this paper, we study self-dual codes over the ring Zsy, of the integers modulo 2k
with relationships to even unimodular lattices, modular forms, and invariant rings of
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finite groups. We introduce Type II codes over Zg, which are closely related to even
unimodular lattices, as a remarkable class of self-dual codes and a generalization of
binary Type 11 codes. A construction of even unimodular lattices is given using Type 11
codes. Several examples of Type Il codes are given, in particular the first extremal
Type II code over Zg of length 24 is constructed, which gives a new construction
of the Leech lattice. The complete and symmetrized weight enumerators in genus g
of codes over Zso;, are introduced, and the MacWilliams identities for these weight
enumerators are given. We investigate the groups which fix these weight enumerators
of Type II codes over Zs, and we give the Molien series of the invariant rings of the
groups for small cases. We show that modular forms are constructed from complete
and symmetrized weight enumerators of Type II codes. Shadow codes over Zsg;, are
also introduced.

Index Term: Codes over Zo, Type II codes, even unimodular lattices, invariant rings.

1 Introduction

Recently there has been interest in self-dual codes over finite rings, especially, the ring Z, of
integers modulo 4. The best known nonlinear binary codes such as the Nordstrom-Robinson,
Kerdock, Preparata, Goethals and Delsarte-Goethals codes contain more codewords than
any known linear codes with the same minimum distance. A simple relationship between
these nonlinear binary codes and self-dual codes over Z, was discovered by Hammons, Ku-
mar, Calderbank, Sloane and Solé [14]. Moreover, similarly to binary self-dual codes it
was shown that self-dual codes over Z, are closely related to unimodular lattices via Con-
struction Ay [2], in particular, any extremal Type II code of length 24 gives an alternative
construction of the Leech lattice. The notion of Type II codes over Z, was introduced in
[3]. More recently as simple generalizations, cyclic self-dual codes over Zom, especially the
lifted Hamming and Golay codes have been investigated in [4] and Type II codes over Zom
have been studied in [9]. It is natural to consider the ring Zom for cyclic codes since the
Hensel lift plays an important role, however there is no need to restrict the order of rings
when considering an application to unimodular lattices. The Chinese remainder theorem is
a useful tool to investigate codes over Zj [11].

In this paper, we study self-dual codes over Zg,. In Section 2, we give definitions and
some basic facts. We also introduce Type II codes over Zs, as a remarkable class of self-dual
codes then we show such codes are closely related to even unimodular lattices in Section 3.
This relationship provides a number of properties of Type II codes. In Section 4, several
examples of extremal self-dual codes are constructed giving construction methods. For
example, the first extremal Type II code over Zg of length 24 is constructed, which gives a
new construction of the Leech lattice. Section 5 introduces the complete and symmetrized
weight enumerators in genus g of codes over Zg,. The MacWilliams identities for those weight



enumerators are provided. We also investigate the groups which fix weight enumerators of
Type II codes over Zo,. Section 6 investigates shadow codes of Type I codes over Zgi. In
Section 7, modular forms are constructed from weight enumerators of Type II codes. In
Section 8, we give the Molien series for the invariant rings corresponding to the complete
and symmetrized weight enumerators in genus g of Type II codes over Zy; for small k and

g.

2 Definitions and Basic Facts

In this section, we first give the definitions used throughout this paper. Then we introduce
Type II codes. Some basic properties of the Fuclidean weight are also given.

A linear code C' of length n over Zyy is an additive subgroup of Zs,. A nonlinear code
C' of length n is simply a subset of Zs,. In this paper, we consider only linear codes.
An element of C' is called a codeword of C. A generator matrix of C' is a matrix whose
rows generate C'. The Hamming weight wty(z) of a vector x in Zj, is the number of
non-zero components. The Fuclidean weight wtg(z) of a vector x = (z1,x9,...,x,) is

»  min{a?, (2k — z;)*}. The Lee weight wtr(x) of a vector x is 31 min{|z;|, |2k — 4|}
The Hamming, Lee and Euclidean distances dg(z,v), dr(x,y) and dg(x,y) between two
vectors = and y are wty(z — y), wty(z —y) and wig(x — y), respectively. The minimum
Hamming, Lee and Euclidean weights, dy, d;, and dg, of C' are the smallest Hamming, Lee
and Euclidean weights among all non-zero codewords of C', respectively.

We define the inner product of z and y in Zj, by < z,y >= 191+ - -+ 2.y, (mod 2k)
where z = (21,...,2,) and y = (y1,...,¥n). The dual code C*+ of C is defined as C+ =
{xr €eZy | <xy>=0foralye C}. Cis self-orthogonal it C C C+ and C is self-dual
if C = C*t. We define a Type II code over Zgy, as a self-dual code with Euclidean weights
divisible by 4k. For k = 1, this is the standard definition of binary Type II codes. For
k = 2, the original definition given in [3] requires that the code contains the all-one vector
as well, however recently it has been shown in [16] that such a Type II code in terms of [3]
is equivalent to a Type II code by our definition. Self-dual codes which are not Type II are
said to be Type L.

For some applications, there is often no need to distinguish between +1 and —1 compo-
nents of codewords, and we say that two codes are equivalent if one can be obtained from
the other by permuting the coordinates and (if necessary) changing the signs of certain
coordinates. Codes differing by only a permutation of coordinates are called permutation-
equivalent.

The complete weight enumerator (cwe for short) of a code C' over Zgy is defined as
_ no(c) .n1(c) nak—2(c)  nox—1(c)
cwec (2o, 1, .. Top-1) = Y xo" T i it
ceC

where n;(c) is the number of i components of ¢, respectively. Permutation-equivalent codes
have the identical cwe’s but equivalent codes may have different cwe’s. The appropriate
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weight enumerator for equivalent codes is the symmetrized weight enumerator (swe for short)

defined as /
swec(To, 1, ..., T) = Z :Egé’(c)x?ll(c) . -xzk_]] (C)xZ;°<C),
ceC
where n{(x),n|(z),...,n,_,(c),n,(c) are the numbers of 0, £1, ..., £k — 1, k components of
¢, respectively.
Let {q1, g2, - - -, ¢} be the set of integers less than 2k that divide 2k, and arranged so that
¢i < g;j for @ < 7. Note that this implies ¢; = 1. Any code over Zsy;, is permutation-equivalent

to a code with generator matrix of the form

g1y, A1,2 A1,3 A1,4 s e Al,r+1
0 QQIk2 QQA2,3 Q2A2,4 e e QQAZ,T+1
] 0 0 q3 1y, 93A3,4 s Q3A3,r+1
(1) . . 0 —_— 5 :
0 0 0 e 0 QT[kT qrAr,r+1

where A;; are binary matrices for 7 > 1. A code of this form is said to be of rank
{gfr, o™ gsks, ... q.F} and it has H;Zl(qij)kj codewords.

We now give basic properties of Euclidean weights over Zoy,.
Lemma 2.1 Let x be a vector in Zy,. Then wtg(z) =< x,x > (mod 4k).

Proof. Follows from the definition of the Euclidean weight. O

Lemma 2.2 Let M be a generator matriz of a code C. Suppose that the rows of M are
vectors in Zsy,, with Fuclidean weight a multiple of 4k with any two rows orthogonal. Then
C' is a self-orthogonal code with all Fuclidean weights a multiple of 4k.

Proof. Let r; be the i-th row of M. By Lemma 2.1,
(2) wtp(r +vy) = wtg(x) +wtp(y) +2 < z,y > (mod 4k).

This shows the lemma. O

By the above lemma, it is sufficient to obtain the Euclidean weights of all the rows in a
generator matrix of a code C' when we check if C' is Type II.

We now introduce the notion of shadows for Type I codes over Z,,. We first define a
specific coset of a Type I code C' over Zsg, in order to define the shadows. The 4k-weight
subcode Cy of a Type I code C' is the set of codewords of C' of Euclidean weights divisible
by 4k.



Lemma 2.3 The subcode Cy is a linear subcode of index 2 in C.

Proof. By (2), the sum of two codewords in Cy is in Cy. Every vector in C' has a Euclidean
weight divisible by 2k. By (2) we see that Cy = C' — (Y is of the form x + Cy where z is any
codeword of C' of Euclidean weight congruent to 2k (mod 4k) and that translation by x is
a one to one map from Cy onto Cs. a

Define the shadow of C as S = Ci- — C. The shadows for binary Type I codes were
introduced by Conway and Sloane [6]. This notion was applied to Type I codes over Z,
in [10]. Unlike the binary case, Ci-/Cy is not necessarily isomorphic to the Klein 4-group;
it may be isomorphic to either the Klein 4-group or the cyclic group of order 4.

3 Even Unimodular Lattices and Type II Codes

Let R™ be an n-dimensional Euclidean space with the inner product [z,y] = x1y1 + 22y +
s 4wy, for o = (1, 29,. .., 2,) and (y1,Y2, ..., Yn). An n-dimensional lattice A in R" is
a free Z-module spanned by n linearly independent vectors vq,...,v,. An n by n matrix
whose rows are the vectors vy, ..., v, is called a generator matrix GG of A. The fundamental
volume V(A) of A is |det G|. For a sublattice A’ C A, it holds that V(A") = V(A)|A/A].
The duallattice A* is given by A* = {z € R"|[z,a] € Z for all a € A}. A lattice A is integral
if A C A*. An integral lattice with det A =1 (or A = A*) is called unimodular. If the norm
[z, x] is an even integer for all x € A, then A is called even. Unimodular lattices which are
not even are called odd. The minimum norm of A is the smallest norm among all nonzero
vectors of A.

Applying Construction A in [7] to Type II codes over Zsgi, we have the following con-
struction of even unimodular lattices. Let p be a map from Zy, to Z sending 0,1,....k to
0,1,...;,kand k+1,...,2k—1to1—k,...,—1, respectively.

Theorem 3.1 If C is a self-dual code of length n over Zoy, then the lattice

A(C) (C) + 2kZ™},

1
—\/—27{{0

is an n-dimensional unimodular lattice, where p(C) = {(p(c1), - .-, p(cn)) | (c1,...,cn) € C}.
The minimum norm is min{2k, dg/2k} where dg is the minimum Euclidean weight of C.
Moreover, if C' is Type Il then the lattice A(C) is an even unimodular lattice.

Proof. 1If ay,ay € A(C) then a; = (¢; + 2kz;)/V/2k where ¢; € p(C) and z; € Z" for i = 1
and 2. Since C is self-dual, the inner product of a; and as is

1
[CLl,ag] = ﬁ{[cl,cﬂ + 2k[21,€2} + 2]{}[61,2’2] -+ 4]€2[21,ZQ]} € Z,



thus A(C) is integral. In addition, if C' is Type II then the Euclidean weights are divisible
by 4k. Then we have

1
lai,a1] = ﬂ{[% 1] + 4k[z1, z1] 4+ 4k%[er, 2]} € 2Z,

so that the lattice is even.
Consider the lattice v2kA(C), then

2kZ™ C V2kA(C) C Z".

Since V(2kZ") = (2k)" and |v/2kA(C)/2kZ"| = (2k)"/?, we have V(v/2kA(C)) = (2k)"/2.
Then V(A(C)) =1 and A(C) is unimodular.
It is easy to see that [a;, a;] > [c;/V/2k, ¢;//2k] where a; = (¢; + 2kz;)/v/2k. Thus the

minimum norm is min{2k, dg/2k}. O

Theorem 3.1 provides much information on Type II codes over Zs. For example, the
following corollary characterizes divisible self-dual codes over Zoy, in terms of their Euclidean
weights.

Corollary 3.2 Suppose that C' is a self-dual code over Zsy, which has the property that every

Fuclidean weight is a multiple of a positive integer. Then the largest positive integer c is
either 2k or 4k.

Proof. If a unimodular lattice has the property that every norm is a multiple of some
positive integer d then d is either 1 or 2 (cf. [19]). If C is self-dual then A(C) is unimodular.
Thus ¢ must be either 2k or 4k. O

Remark. Type I and Type II codes correspond to odd and even unimodular lattices,
respectively.

Moreover, Theorem 3.1 gives a restriction of the length of a Type II code.

Corollary 3.3 If there exists a Type II code C' of length n over Zsy, then n is a multiple of
eight.

Proof. An even unimodular lattice of dimension n can be constructed from C' by Theo-
rem 3.1. Even unimodular lattices exist if and only if the dimension is a multiple of eight.
Thus n must be a multiple of eight. O

Now let us consider the converse assertion of Corollary 3.3.

Proposition 3.4 There exists a Type II code C of length n over Zoy if and only if n is a
multiple of eight.



Proof. Consider the matrix
( ]4 3 M4 )a

where I, is the identity matrix of order 4 and

a b c d
b —a —d c
M p—
4 c d —a —-b |’
d —c b —a

then M, - M, = (a2 +0+ P+ d2)I4 over Z where *A denotes the transpose matrix of a
matrix A. From Lagrange’s theorem on sums of squares, there are elements a,b,c,d of Z
such that 1+a?+b?+ ¢ +d* = 4k for any k with & > 0. The integers a, b, ¢, d are necessarily
less that or equal to 2k so there exists a, b, ¢, d of Zoy, such that 1+ a? + b* + ¢ + d? = 4k for
k > 0. Therefore these elements a, b, ¢, d of Zgy, give that the matrix ( Iy , My ) generates a
Type 11 code of length 8 over Zoy for any positive k. Note that Calderbank and Sloane [4]
gave the lifted Hamming codes which are Type II codes of length 8 for Zgm. a

The above Type II codes of length 8 give different constructions for the Gosset lattice
FEs which is the unique 8-dimensional even unimodular lattice.

We now investigate the minimum Euclidean weight of Type II codes over Zgo. The
minimum norm g of an n-dimensional even unimodular lattice is bounded by p < 2| %] 42
and even unimodular lattices with u = 2[5 | +2 are called extremal (cf. [7]). The minimum
norm of the lattices constructed from Type II codes C' gives directly an upper bound on the
minimum Euclidean weight of C'.

Corollary 3.5 Let dg be the minimum Fuclidean weight of a Type II code of length 8n over
Loy If | 5] <k —2, then

n
(3) dp < 4k([§J +1).
Proof. Suppose that there exists a Type II code C' with minimum Euclidean weight
dp = 4k(|%] +2). The minimum norm g of the even unimodular lattice A(C') constructed
from C'is min{2k, 2| %] +4}. From the assumption, u = 2| %] + 4, which is a contradiction.
O

Remark. When & = 1 and 2, the above bound (3) holds without the assumption | 5] < k—2
(cf. [3], [18]). For k =1 and 2, (3) is a bound for binary doubly-even self-dual codes and
Type II codes over Z,. Thus the following conjecture is natural.

Conjecture 3.6 The minimum Fuclidean weight dg is bounded by dg < 4k(|5] +1) for all
k> 1.



When |%] < k — 2, we say that Type II codes over Zy, with dg = 4k([5] + 1) are
extremal for k > 3.

Recently Rains and Sloane [21] have proved that the minimum norm of p of an n-
dimensional unimodular lattice is bounded by g < 2[ ;| + 2 unless n = 23 when p < 3.

Corollary 3.7 Let dg be the minimum Euclidean weight of a Type I self-dual code of length
n over Zaoy. If 2| 35| < 2k — 3, then

ak(| 2] +1) n#23,
(4) dp < { 6k n =23

When 2|35 | < 2k —3, Type I codes over Zg, meeting the above bound (4) with equality
are called extremal.

Remark. It is natural to define the Euclidean weights of the elements 0, £1, 2, £3,-- -, £(k—
1), £k of Zopy1 as 0,1,4,9,- -, (k—1)%, k?, respectively. If C is a self-dual code over Zoy 1
then the lattice A(C') in Theorem 3.1 is a unimodular lattice. However even if C'is a self-dual
code with all vectors having Euclidean weight a multiple of 4k + 2, then A(C) is not always
even. For example, the Euclidean weight of a vector (1123) over Zs is 10 but the norm is
15. Moreover, the sum of two even vectors in Zog,1 is not necessarily an even vector, for
example the sum of (112) and itself in Z3 is (221) which is not even. Thus in this paper we
consider Type II codes over Z; for only even numbers k.

4 Extremal Self-Dual Codes

4.1 Extremal Type II Codes over Zg and Zsg

The most remarkable length for extremal Type II codes is 24, because of the connection
with the Leech lattice. Several inequivalent extremal Type II codes over Z, have been
constructed. The first extremal Type Il codes over Zyy are constructed here for £ = 3 and
4.

Lifted Golay codes over Zym are given in [4]. We consider a code G2* of length 24 over
Zg constructed from the cyclic code with generator polynomial

o' 4210 + 29 4 228 + 527 + 32% + 25 + 423 + 32 + 5,

by appending 1 to the last coordinate of the generator vectors. The code G2 is Type 1T and
G#  (mod 2) = {c (mod 2) | c € G} is the binary Golay code. G?* is constructed from
binary and ternary cyclic codes.

The swe of the above Type II code G2* is



swegz (a,b,c,d) =

d?* + 48¢** + 3643207 c'0d’ 4 9715263 12 d?

+364320*c®d*? 4 5100486 c10d® + 34974726% ¢*2d°® + 1603008b7 ¢*d”

+3643268 10 4+ 404807 d*® + 680064007 c2d® + 89622726103 d"

+61824b'2d'? + 123648b'2c? + 510048003 B d> + 242880b° d°

+36432b10¢8 4 1983520185 + 24288p%1 d3 + 48b%

+13248abcttd™t + 971520ab% 0 d® + 2914560ab* ! d® + 582912ab° ¢’ d
+4080384ab’ P d? + 36140544ab” ¢td® + 14572800ab8c”d® + 24482304ab% M d?
+39055104ab't ¢"d® + 8743680ab' ¢’ d? + 145728a%bct*d” + 218592a2b%c10d™0
+48576a%b°c5d" + 9472320a%b* M d* + 24773760a20°cd” + 39346564265 CdO
+8743680a%b" c**d + 123868800a%b8¢0d* + 450299524267 Cd” 4 244823040 b 10d
+57076800a2b"2c5d* 4 4080384ab'° S d + 4048a3c?d'? + 242884 !
+2185920a°b%c2d’ + 2963136a°b3c%d” + 218592ab*cPd'? + 3497472063 b7 '3 d®
+97637760a3b°c%d® 4+ 11075328037 d” + 5100480a365¢® + 1839411200307 ¢” d®
+63391680ab0 > d® + 6800640a°b12c” + 3497472003 b3 d® + 510048660
+36432a* P2 d® + 36432a*bBdM + 144270720 b3 2d + 14281344a*b* Sd®
+728640a*b°c*d't 4 57076800ab°c!2d? + 1874062080 b c*d® + 156657604 b5 d®
+123868800a*b10c3d? + 429897604 b ctd® + 94723200 b ctd? + 582912a°bettd”
+437184a° b2 " d*0 4 429897600 bttt dt + 370149124677 d” 4 1068672a°b5 ¢3d™°
+39055104a° b7t d + 187406208a°b8¢d* + 11075328a°b¢3d” + 36140544a°b e’ d
+14427072a° b2 c3d* + 971520a°b0 ¢3d + 198352a°¢*® + 3934656a° 620 d"
+1603008a°b3c8d® + 63391680a°b°c'0d® + 50276160a°b°CdS + 728640a5b7 *d’
+8962272a50° 10 4- 97637760a°° P d> + 3934656a°02d® + 3497472a5b12°
+2185920a°b"3c?d® + 36432a°b'0c? + 2428847 P d® + 1107532807 b3 d°
+3133152a"b*c>d® + 4502995247007 d? + 37014912470 P d® + 255024a” b8 cd®
+24773760a7 b0 d? + 5829124 b ed® + 1457280 b 4 ed? + 759a8d*6
+255024a8bc®d” 4 15665760ab*Pd* + 3133152a%6°c*d™ + 14572800ab7 Bd
4142813440868 d* + 242884°07d" + 2914560a°b" ¢*d 4 36432a%b'%d*
+242880a° ¢® + 728640a°b%c”d® + 110753284 b°¢"d® + 160300849 ¢3d°
+1603008a”b%¢" + 2963136a°b°c*d® + 97152a°b'2 % + 1068672a163 0 dP
+3934656a°°0d? + 4371840107 2d® + 218592a'b10c2d? + 728640at bt dt
+582912a'107c d + 36432a b8 cd* + 132484 bt ed + 2576012 d*?

+61824a'2c'? + 21859241207 c*d® + 36432a12b8¢* + 404841207 d3

+48576a2b°cPd? + 4048a° ® + 759a0d® + a*.



Thus G2* is an extremal Type II code of length 24 over Zg. Applying Theorem 3.1 to G324,
the Leech lattice is constructed.

Recently some new 5-designs have been constructed from the lifted Golay code over Z,
(cf. [15]). In addition, any extremal Type II code of length 24 with the same symmetrized
weight enumerator as the lifted Golay code contains 5-designs (cf. [1]). G2*  (mod 2) is the
binary Golay code and Gg* (mod 3) is an extremal ternary self-dual code. Thus the four
sets of the codewords corresponding to 759a'%d®, 4048a'°¢c?, 2576a'?d'? and 61824a'2c'? form
5-designs. However we have verified by computer that sets of the codewords corresponding
to 218592at2b°c*d?, 36432a'%b%c*, 4048a'?b°d? and 48576a'3b%c3d? do not form 5-designs.

Now we investigate Type II codes of length 24 over Zg. The lifted Golay codes of length
24 over Zom were constructed from the binary Golay code by the Hensel lifting (cf. [4]). The
Golay codes are Type II codes, however the Golay code over Zg is not extremal (cf. [9]). In
addition, it was shown in [9] that there is no extremal double circulant Type II code over
Zg of length 24. Thus we consider Type II codes of another type. For k > 2, a generator
matrix of an extremal Type II code over Zs, give a generator matrix of the Leech lattice.
Thus it is natural to investigate generator matrices of the Leech lattice. A generator matrix
of the Leech lattice is given in Figure 4.12 of [7]. The generator matrix gives a 23 by 24
matrix Moyg over Zg. It is easy to see that the matrix My g generates a Type II code of
length 24. In addition, since the following matrix

S Moy g
\/g )
80 .- 0

generates the Leech lattice, the matrix Mg must generate an extremal Type II code of
rank {11,211 41} Tt seems that this code is the first extremal Type IT code of length 24
over Zsg.

Proposition 4.1 There exist extremal Type II codes of length 24 over Zgy for k < 4.

This gives the following question.

Question. Is there an extremal Type II code of length 24 over Zgo for k > 57

4.2 Methods to Construct Self-Dual Codes

Here we present methods to construct self-dual codes over Zoy,.

Proposition 4.2 Let ( I , A) be a generator matriz of a Type II code C with rank {1*"}
over Lgy, of length 8n containing the all-one vector 3 where a; is the i-th row of A. Let T be
a set consisting of a columns of A where 0 < a < 4n. Assume that |U'| or k is even. Let
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40000000000000000000000
04000000000000000000000
00400000000000000000000
00040000000000000000000
00004000000000000000000
00000400000000000000000
22222220000000000000000
00000004000000000000000
00000000400000000000000
00000000040000000000000
22200002222000000000000
00000000000400000000000
20022002200220000000000
02020202020202000000000
00220022002200200000000
00000000000000040000000
02020022200000022000000
00222002020000020200000
20020202002000020020000
22220002000200020002000
00000002200220022002200
00000002020202020202020
11111111111111111111111

Moy g =

CCONNNAENNDNDEND S BB NDE & B & B A

I
w

t = (t1,...,ts,) be a (1,0)-vector where t; = 1 if i € ' and t; = 0 otherwise. Let Ar be a
matrixz which has the i-th row

;| @ + kt, if ||la; + kt|| = —1  (mod 4k),
Y|+ kt 4 k5, otherwise,

where ||z|| denotes the Euclidean weight of x and j is the all-one’s vector. Then the matriz
G = (I, Ar) generates a Type II code Cr.

Proof. We have |a; + kt|| = ||a;|| (mod 2k). Moreover, if ||a; + kt|| = 2k —1 (mod 4k),
then ||a; + kt + kj|| = —1 (mod 4k). Thus a row of G is orthogonal to itself and the
Euclidean weights of all the rows of G are divisible by 4k. In addition, the i-th row a} of Arp
can be written as

i + Kkt 1
a; = ai+kt+kj(u)‘
2k
Since C' contains the all-one vector, a;, - 7 = —1 (mod 2k). Thus we have
s + k| + 1 My + kt| + 1
<aha> = <okt RGO (o g gt D)
i+ kt|| + 1 +kt|| + 1

= <a,a; >.

Therefore the code Ct is self-dual.
The Fuclidean weight of a row of GG is divisible by 4k and C' is self-dual. Thus it follows
from Lemma 2.2 that the Euclidean weight of every codeword of the code is divisible by 4k.
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Starting one generator matrix, one can construct a number of Type II codes which might
be inequivalent codes.

Corollary 4.3 Let the assumptions and notations be the same as ones of Proposition 4.2.
Let Br be a matrixz which has the i-th row

;| a; + kt, if ||la; + kt|| =2k — 1 (mod 4k),
a; + kt+ k7, otherwise.

Then the matric G' = (1 , Br ) generates a Type I code CY..

Remark. We gave methods to construct Type I and Type II codes from certain Type 11
codes. Similarly one can easily get similar methods to construct Type I and Type II codes
from Type I codes of length 8n.

As an example, we construct an extremal Type I code over Z, of length 24. An extremal
Type II code Doy over Z, with generator matrix of the form

2 3 ... 3
1

I R
1

where R is a 24 by 24 circulant matrix with first row (21311133313) is given in [5]. By
Corollary 4.3, Type I codes are constructed from Dog. When I' = {1}, it is easy to see that
its generator matrix is

0 3 3
1

I : R+2J
1
and the minimum FEuclidean weight of this code is 12, thus this is an extremal Type I
code over Z4 of length 24. By Theorem 3.1, this code yields the 24-dimensional unique
odd unimodular lattice with minimum norm 3 which is called the odd Leech lattice. Other
extremal Type I codes of length 24 are constructed in [13].

5 Weight Enumerators, MacWilliams Identities and

Invariants

In this section, we introduce several types of weight enumerators of codes over Zo;. For
these weight enumerators, we establish the MacWilliams identities and study invariants.
From now on R denotes the ring Zsoy.
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5.1 Weight Enumerators and MacW.illiams Identities

First let us fix the notations. We denote the primitive m-th root €™/ of unity by 7.
A[B] :=="ABA for matrices A and B, where ‘A denotes the transpose of A.

Definition 1 (Complete Weight Enumerators in Genus g) For a code C' over R, we
define the complete weight enumerator in genus g by

CCvg(zavvith ac Rg) = Z H Z:a(cl,--.,cg),

c1,...,cg€C a€ERI

where ny(cy, ..., c,) denotes the number of i satisfying a ="(cyi,. .., Cgi)-

Remark. (1) For the case g = 1, these weight enumerators are the same as ordinary
complete weight enumerators defined in Section 2.
(2) For the case k = 1 these weight enumerators were introduced in [12] and [23].

We define a relation ~ in RY by
a~b<=a=bora=-b

where a,b € R?. Then the relation ~ becomes an equivalence relation in 9 and we denote
the natural projection using the conventions @. Note that wtg(a) = wtg(—a) and wig(a) =
wtp(—a).

Definition 2 (Symmetrized Weight Enumerators in Genus g) For a code C over R,
we define the symmetrized weight enumerator in genus g by

Scylzmwithae B9) = Y [ a=@r),

Clv"'chECg acRI
where ng(cy, ..., cq4) denotes the number of i satisfying @ = t(cy, . - ., Cgi)-

Remark. For the case g = 1, these weight enumerators are the same as ordinary sym-
metrized weight enumerators defined in Section 2.

From now on, we often write complete and symmetrized weight enumerators in genus g
by €c4(2a), Scg(2z), respectively, for simplicity.

We have the MacWilliams identity for the complete weight enumerators. Here we con-
sider that an n by n matrix M acts on the polynomial ring C[zy, xo, ..., x,] naturally, that
is,

M'f(ﬂ]l,l’g,...,xn):f( Z 15Ty -, Z CLnj.Tj),

1<j<n 1<j<n

where f € Clxy, 2o, ..., 2,] and A = (a;;).

13



Theorem 5.1 (MacWilliams Identity) For a code C' over R, we have
Q:Cl,g(za) = —

where T' = (néﬁ’w)a i

Similarly, we have the MacWilliams identity for the symmetrized weight enumerators.

Corollary 5.2 (MacWilliams Identity) For a code C, we have

St y(za) = =T

(a,d)

25T and t(a b) ZdeRg with d= b772k

where T = (t(ﬁ, 5))

5.2 Invariant Rings

In this subsection, we study the invariance properties of complete and symmetrized weight
enumerators.

We define a subgroup vak of GL((2k)9,C) as
G® ok = (Ty, Ds,mg| S runs over all integral symmetric matrices),

where

g
U . Sla] .
T,=|—=| T,Ds = dia with a € RY).
g <m> S g (n4k )

Theorem 5.3 For any Type II code C' over R, the complete weight enumerator in genus g
1s invariant under the action of the group Ggyk

Proof. We have only to check three types of generators, T,, Dg, and ns. The invariance
property of T,, ng comes from Corollary 3.3 and Theorem 5.1. We shall show that Dg -
Cog(2a) = €og(2,). We have

Dg-Cc 4(2,) = S I« Ufk[a]z na(CLyeencq)

c1,...,cg€C a€ER

- Z H S[a Na Cl, - C ) na(C],.--,Cg)
= Za, :

C1,..,¢g€C a€ER

In order to prove the theorem, we have to show Y ,cr Slal - na(ci,....cg) =0 (mod 4k).
> Slal-na(er,..oieg) = D S[Her .-y cgi)]
aER 1<i<n
= DD swle)® 20 D). SumC Co
1<i<n 1<k<g 1<l<m<g
= > s > (@) 2 D S Y. GG
1<k<g 1<i<n 1<l<m<g 1<i<n

14



For any element ¢y, we have wig(ck) = Yi<icn(cri)?* =0 (mod 4k). And Y1<ic,, clicr = 0
(mod 2k) follows from the calculation dg(c, cx) =0 (mod 4k). Therefore it turns out that
YaerSlal - ng(c1,...,¢g) =0  (mod 4k). This completes the proof of the theorem. O

Remark. (1) G, is (up to £1) the homomorphic image of the modular group I'; under
the theta representation of index k (cf. [24]).

(2) Theorem 5.3 says that the ring generated by complete weight enumerators for Type 11
codes is contained the invariant ring of the group ng. For k = 1, two rings coincide (cf.
Theorem 3.6 in [23]).

We now define a subgroup H3, of GL(29*(k? + 1),C) as

’

H;,€ = (T,, Dg, ng| S runs over all integral symmetric matrices ),

where

g
il UL o - . Sla] .1 —
T, =|—=| T and Dg = dia with @ € p(RY)).
g ( 7,{) s g (M p(R7))

Similarly to complete weight enumerators, we have the following MacWilliams identity
for symmetrized weight enumerators in genus g.

Corollary 5.4 For any Type II code C' over R, the symmetrized weight enumerator in genus
g 1s invariant under the action of the group Hfik.

In concluding this subsection, we would like to emphasize that the groups G, as well
the groups Hyy, G5, and HY, are all finite groups. This is explained as follows. Here we
assume that the reader is familiar with some of the basic concepts of theta functions, such
as given in Runge [24].

The group H,; =< T,, Ds | S runs over all integral symmetric matrices > acts linearly
on the space spanned by the theta constants f{¥) of index k, where

f (1) = mezz:g exp2mi(kT]x + 2%:])

Note that here k € N, a € (Zoy)*.
It is known that the group H,;/(£1) is a homomorphic image of the Siegel modular
group I'y = Sp(2¢, Z) under the theta representation of index k:

Ptheta k - Fg — AUt(THé’ng))

in the notation of [24]. The kernel of this representation is completely described in Runge [24,
Theorem 2.4]. In particular, this kernel contains the subgroup I';(4k). Since I'y/T",(4k) =
Sp(2g, Zayy) is a finite group, the finiteness of the group H,,, follows immediately.
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Similarly, the group Gy =< T,, Dg | S as above > acts linearly on the space spanned
by the theta functions f*)(7, z) of index k, where

fék)(ﬂ z) = Z exp2mi(kT(x + ﬁh— <z+ ﬁ, 2kz >).
zeZ’ 2k 2k

Again, Gy /(£1) is a homomorphic image of I'y = Sp(2g, Z) under the theta representation:
ptheta,k : Fg — AUt(THEIZ;S(Szg))
in the notation of [24]. From the relation

( LS ) 19, 2) = exp2ri(2) . 0 (7,2,

0 1 4k

it is again proved that I'(4k) is in the kernel of the theta representation, see e.g., Runge
24] or Kac [17, Theorem 13.5 (p. 169)]. Since the group I'y/T';(4k) is finite and since
|Gygi| < 2-|1'y/T4(4k)|, we have the finiteness of the group Gy ;. The finiteness of the groups
G5, and HY ) are immediately obtained as |G | < 8- |Gy x| and [H,| < 8- [Hy .

Although we will not discuss the details here, it is possible to determine the orders and the
structures of the groups Gk, Hg, G5, and Hj , more explicitly, by using the known explicit
determinations of the kernels of the theta representations ppetar 1 I'g — Aut(’f’}‘(é%)) given
in Runge [24].

We give in Table 1 the orders of the groups G i, H . Gz’k and Hj’k forg=1and k <8.
It can be shown, for example, that

GY ym| = 1922771,

Table 1: Orders of the Groups G, Hy, Gs,k and H;k

k 1 2 3 4 5 6 7 8
|Gig| | 96 384 2304 3072 11520 9216 32256 24576
|Hyy| | 96 384 1152 3072 5760 9216 16128 24576
|G§’k| 192 1536 4608 12288 23040 368648 64512 98304
|H§,k,| 192 768 2304 6144 11520 18432 32256 49152

6 Shadows and Weight Enumerators

We first prove that the complete (resp. symmetrized) weight enumerator of the shadow of
a Type I code C over Zsyy is uniquely determined from the complete (resp. symmetrized)
weight enumerator of C'.
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Lemma 6.1 If C is a Type I code over Zoy, then

2 2 _1)\2
cwec, (To, Ty« .oy Tog—1) = E(swec(aco, Tiy.e., Top_1) + swec(ngkxo, nikarl, .. ,nik b Tok—1))
1 2 2 2
swegy (o, X1, ..., TE) = E(swec(azo, X1, ..., Tg) + swec(ngkxo, nikaro, . ,nfkak)).

where Ny, denotes the primitive 4k-th root of unity.

Proof. Let ¢ = (¢y,¢9,...,¢,) be a codeword in C' then
H(nfjcxz)m( c) H 774k z n;(c) H 774k Lt 2n;(c) H nl(r
i=1 i=1 i=1 i=1

Since C' is self-dual, ¢ has Euclidean weight = 0 (mod 2k). Since wtg(c) = S, i%n,(c)
(mod 4k),
[T ()™ =

=1

—TI, 2 if wtg(c) = 2k (mod 4k)
2O fwip(@) =0 (mod 4k).

This proves the lemma. The swe is computed from the cwe. a

Theorem 6.2 Let C' be a Type I code over Zgy, and let S be its shadow. Then the cwe and
swe of S is related to the cwe and swe of C' by the relation

cweg (o, X1, ..., Top—1) = cwec(A(zo,x1,...,Tok_1))
sweg(xg, T1,...,x5) = swec(B(xo,x1,...,%k))
where A = (a;;) is the 2k by 2k matriz with a;; = \ﬁﬂilj%, and B = (b;;) is the (k+1) by
(k + 1) matriz with b;; = Y y=; ay; where i’ =i if i’ =1 ori = —i.

Proof. We proceed as in [6, p. 1323] by computing first by the MacWilliams identity

CWer L (QZQ, T1,y... ,Z’2k_1) = —Cwec(M(SCo, L1y ka—l)

]

where M = (my;) is the 2k by 2k matrix with m;; = 7, the cwe of C, then the cwe of its
4k-weight subcode, the cwe of the dual of the latter, and finally the cwe of the shadow by
the difference of the cwe of Ci- and the cwe of C. The swe follows similarly. O

Definition 3 (Complete Joint Weight Enumerators) The complete joint weight enu-
merator for codes C and K of length n over R is defined as

Jox(Xa witha € Rx R) = Z H X:a(c,k)

(c,k)eCx K acRxR

where na(c, k) = |{jl(cj,k;) = a}|, ¢ = (c1,...,¢,) and k = (k1,..., k). Similarly to
complete weight enumerators, we often simply denote the weight enumerators by Jeo r(Xa)-
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In a similar argument to Theorem 5.1, we have the MacWilliams identity for complete
joint weight enumerators.

Theorem 6.3 (MacWilliams Identity) Let A denote either A or A+. Then
1

Jei(Xa) = |C|5&Cl |K|5I?,Kl (T&é’cL ® T(SR’KL):’C,K(Xa)a
where -
T = ("), w630 = { (1) Ziﬁ ~ ﬁl_
Proof. Similar to that of Theorem 5.1. O

We give relationships between a Type I code and its shadow using the weight enumera-
tors.
Given the complete joint weight enumerator for Jo ¢ we can find Je ¢y, Iy, and Jey.cp-

Proposition 6.4 Let C' be a Type I code over R and let Cy be the 4k-weight subcode of C.
Then

~ 1 ~ ~

JC,CO (Xa) - i(JC,C(Xa) + JC,C(Xfﬁ(a)))

~ L. ~

dco,c(Xa) = E(JC,C(Xa) +JC,C(X¢(a)))

o L. N N o
Jco,co(Xa) = Z(JC,C(Xa) +3c.0(Xo@) +Ioo(X@) + oo (Ko@)

where ¢(a) = nbi(a,b), Y(a) = nik(a.b) and (a) = 1% " (a,b) for a = (a,b) € R x R.

Proof. Notice that the substitution Xy fixes each monomial representing codewords
with Euclidean weight divisible by 4k and negates each monomial representing codewords
whose Euclidean weight = 2k (mod 4k), which gives the result. The remaining two cases
are similar. O

We can apply the MacWilliams identity to find all the joint weight enumerators involving
C,Cy,Cy-, and S. In particular we have the following:

Proposition 6.5 Let C' be a Type I code over R and let S be its shadow then

Jsc(Xa) = (T®1)JIoe(Xp@)
Jos(Xa) = (IQT)Jco(Xye))
Jss5(Xa) = (T@T)JIcc((Xo))-

18



Proof. We compute Jo. ¢y, Joo.c and Je,.c, by the above theorem, apply the MacWilliams
identity and then compute the desired weight enumerators from these weight enumerators.
O

Lemma 6.1, Theorem 6.2, Propositions 6.4 and 6.5 determine complete, symmetrized
and joint weight enumerators for Cy and S from ones of C'. For the code to exist all of
these weight enumerators must have non-negative integral coefficients. Our results seem to
be useful for proving the non-existence of a certain Type I code over Zs,. In fact, for the
case k = 1 the non-existence of some Type I codes with high minimum weight was proved
in [6] using their shadows.

7 Construction of Siegel Modular Forms

We first recall the notations of theta functions (for more detail, e.g. see [24]):

1

o] (1) := > exp2my/—1|=7 {i + g} + (x + g,

3 , P 2 P
xel

where H,, denotes the Siegel upper half-space H, = {Z = X +iY € GL(9,C)|Z ='Z,Y >

0}.

We define for any positive integer k the following theta functions:

=0 | | @i

N

>>,a,ﬂ€F§,T€Hg,

It is well known that the modular group I'; = Sp(2¢,Z) is generated by the elements

J = < 0[ é ) and Dg = ( é f ), where S runs over the symmetric g by g matrices.

They act on the theta functions as follows:

Ds(f(gk))<’]') = exp 271 (%) fék)<7'),

J(f)(7) e (k)
T = g a,bfb T).

Moreover, the theta functions for a lattice L are defined by

Org(r):= S I[ ¢

@1,wg€L 1<i,j<g

where ¢;; = expmy/—17;;.
A Siegel modular form of weight k for I'y = Sp(2¢,Z) is a holomorphic function f on
B

the Siegel upper half-space such that for all ( é D

) e I'y, we have

f((AT 4+ B)(CT + D)™Y) = det(CT + D) f(1).

We need more conditions for the case g = 1.
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Theorem 7.1 Let C' be a Type II code of length n over R and let A(C') be the even uni-
modular lattice constructed from C by Theorem 3.1. Then

Ce o (FP(1)) = G,y (f (7)) = a9 (7)

and these functions give Siegel modular forms of weight n/2 for T,,.

8 Molien Series for Small Cases

The weight enumerator of a self-dual code belongs to the ring of polynomials fixed by the
group of substitutions. In this section, we give the Molien series for the invariant rings of
the groups of small £ and g.

First, let us recall the general invariant theory of finite groups. Let G be a finite subgroup
of GL(n,C). Then G acts on the polynomial ring Clz,...,z,| (C[zy] for short) naturally,
ie.,

Af(x]_,*l'n):f( Z A]_jl'j,..., Z Anjxj)y

1<j<n 1<j<n
where f € Clzg] and A = (A;j)1<ij<n- There exists a homogeneous system of parameters
{61,...,0,} such that the invariant ring C[x4|% is finitely generated free C[0y, . .., ,]-module.
The invariant ring has the Hironaka decomposition

(C[xk]G - ®1§m§sgmc[917 <. 70n]a g1 = 1.
The invariant ring is an graded ring and the dimension formula is defined by
d>1

where C[z;]§ is the d-th homogeneous part of Clzg]®. The dimension formula for the

Hironaka decomposition given in the above form is

1+ tdegon) 4 ... 4 ydegles)

P (t) = '
s) (1-— tdeg(el)) c (1= tdeg(an))

In general, the converse is not true. It is known that we have the identity
Polt) = 3 1
G 2 det(1 — tA)

AeG

This was shown by Molien and is called Molien series.
We recall the notations:

R = ng
g
77 a, . Sla .
Gop = <<\/—;7k> (Uékw)a,bem . diag (ny with a € Rg)>
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Gg,k = <Gg,k7 s

)
s\’ 7 S[a] Ba
Hyp = <<E> (t(ﬁ, b))a,Eeﬁ’ diag (1, with @ € Rg)> ,
Hs,k = <Hg,lm778>a
here (@, b) = 3 - _plad)
where ta, ders with 7=p "Rk
In the following, we give the Molien series in the form
®i(t) = the expansion
= the Hironaka decomposition

= the Hironaka decomposition with factored numerators.

If the numerator is irreducible, we omit the third line for each case.
|G1’1| = 96 and

18 12 416 4 420 L 9424 | 428 4 9432 4
= 1/(1 =) (1 —t'?)

(I)Gm (t)

|G172| = 384 and

Dy, (1) = 1+4t°+20"0 + 3t + 26" + 114" + 7% +
11820 + 9t + 251%* 4+ 18420 + 27t + 23t% + 48¢%% - - -
= (L4+e8+2000 + 267 + 26" 4 2610 4% + 40 + 47 +
t26 + t28 + tSO)/(l _ t8)3(1 _ t12)
= (1+8) (1414
(124265 42010 — 15 1 ¢2) /(1 = £5)°(1 — '2)
|G 3] = 2304 and

g, (1) = 1413+ 156" + 3710 4 78¢%° 4 229> + 419¢%° + 7214%% + - - -
= (1412t + 36t + 63t + 148¢* + 233t*® + 303t°* + 366t™ +
444170 4 460" + 427" + 33872 4 272170 + 174t + 96¢°* + 53¢%
+24t7 + 570 + 39 /(1 — %) (1 — t")3 (1 — )2
= (L=t+8) (L+t+62) (1— 2+ ¢4) (L— 1"+ 1362 + 237 + 2712 +
98t% + 10812 + 97t%2 + 161¢°0 + 18610 + 113t* + 128¢% + 97t +
ATt 4 30t%0 + 19¢%% + 445 1 172) /(1 — %) (1 — t12)3(1 — £74)?

G ,] = 192 and
Gos (1) = 14+ 40+ 2% + 272+

= /(- )1 -
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|GS 5| = 1536 and
Ogs, (1) = 1+ 4% + 11410 + 258 + 48¢%2 4. ..
= (1+ 8 916 4op24 4 432 t40)/(1 _ t8)3(1 _ t24)
= (L)L +9 /- -
|GS 5| = 4608 and
Cgs (8) = 1%+ 3710+ 2296% 4 72147 - -
= (14 35" + 188%* + 4563 + 1099t*° 4 16771* +
1829t + 1793t%* + 1246t™ + 590t*° + 241¢% + 56°° +
525104)/(1 - ts)(l o t16)(1 - t24)4
= (1+*)(1 — 3+ 36t"° + 152¢* + 3044 + 795¢* +
882t + 947° + 846t%* + 400t™ + 190£%° 4 5115 +
5t%) /(1= ¢%)(1 — ') (1 — ¢#)*
|Hy 5| = 384 and
Dy, (t) = 142050+t 44" + 267 + 767 + 47 + 1067 + - - -
= (L+)/(1 -1t
|H, 5| = 1152 and
Dy ,(t) = 14+ 3" + 46" 4+ 56 + 156* +
14t%8 424132 + ...
= (1+2t" +3t" + 20 + 6t°* + 6¢® + 7t + 6t°° +
5140 1 A 48 4952 4 t56)/(1 . t8)(1 . t12)(1 . t24)2
= 1—t+)A+t+)1+tHA =2+t —t* + %)
(1 — "+ 27 + 19 — 20 4 512 — 78 + 32 + 199)
/(=) (1 =)L — )
|H},| = 768 and
Cps, (1) = 142605+ 480 + 74 + 10672 + -
= (1+)/(1 =1 - %)
|Hi3| = 2304 and
Cps (1) = 1+ t8 4 4t 4 1582 4 24472 - .
= (142t 4 9t + 6¢32 + 5t + 7% 4 2t7)
/(=) (1 =) (1 —1*)?
= (1+*)(1 — % + 3" + 612* + 5% + 2t*%)
/(1 =% (1 =) (1 — 2*)%,
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Remark. The Molien series ®¢, ,(t) and ®¢, ,(t) were determined by Runge [22] and Oura
[20], respectively.

Finally we describe the invariant rings for these Molien series. We first consider the
Hamming weight enumerators of binary Type II codes. In this case, the invariant ring for
G%l is generated by the weight enumerators of the extended Hamming [8,4,4] code and
the extended Golay [24,12,8] code. Now let us consider complete and symmetrized weight
enumerators of Type II codes over Zy. In [3], the invariant ring for H}, was investigated
under the condition that Type II codes contain all-one vector, that is, they investigated the
invariant ring for the group K generated by H ig and the matrix

0
0
1

S = O

1
0
0
The group K has the same order as HY,. Thus the invariant ring for HY, is

Clos, dg, d2a] ® d16C|ds, Py, Pod]

where ¢s, %, 16 and ¢4 are the symmetrized weight enumerators of Type II codes Os, Qs, RM (1,4)+
2RM(2,4) and the lifted Golay code G4 over Z4. For the complete weight enumerators,
a Magma computation shows that the invariant ring of G?Q has the homogenous system
of parameters of degrees 8, 8,8 and 24. This means that the invariant ring has exactly the

Molien series of the form

(1 —8)3(1 —t24)
Let W(n) be the ring generated by the g-th complete weight enumerators of Type IT codes

of length n. We have verified by computer that dim W(8) = 4 and dim W(16) = 11 however
we have checked only dim W(24) > 23. Thus it is not known if the invariant ring for G%, is

generated by the complete weight enumerators of Type II codes over Zy,.
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