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Abstract
We study higher weights applied to ternary and quaternary self-dual codes. We
give lower bounds on the second higher weight and compute the second higher weights
for optimal codes of length less than 24. We relate the joint weight enumerator with
the higher weight enumerator and use this relationship to produce Gleason theorems.
Graded rings of the higher weight enumerators are also determined.
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1 Introduction

In this paper we consider the theory of higher weights applied to Type III and Type IV
codes. Higher weights are generalizations of Hamming weights and are also referred to as
generalized Hamming weights and Wei weights ([13], [6] [14]). Type III codes are self-dual
codes over 3, and have the property that the Hamming weight of each vector is divisible by
3. Type IV codes are self-dual codes over F, with the property that the Hamming weight
of each vector is even. For a complete description of self-dual codes see [11]. We shall
investigate the natural weight enumerators corresponding to these weights for these codes
and also give bounds on the second higher weight. The higher weights of Type I and Type I1
codes were studied in [4].

1.1 Notations and Definitions

Let F, be a finite field with ¢ elements. A code over F, is a subset of F;. A code is linear
if it is a subspace. To the space F§ we attach the standard inner product: [v,w]| = > vw;,
and for a ternary code C we define

Ct={velF}|[v,w]=0 Ywe C}.

We denote the elements of Fy by Fy, = {0,1,w,w?}. The field F; has the usual involution
which fixes 0,1 and interchanges w and w?. To the space F} we attach the Hermitian

inner-product, v - w = Y v;w;, and for a code C' define
Ct={veF}|v-w=0 YweC}.

If a code C has C' C C* then we say that C is self-orthogonal, and if C' = C+ then C is
self-dual.

We shall describe the notion of higher weights following the notation in [13]. See this
paper (and also [6] and [14]) for a complete description of higher weights. Let D C F! be a
linear subspace, then

|D[| = [Supp(D)],
where

Supp(D) = {i | v € D, v; # 0}.
For a linear code C define
d,(C)=min{||D|| | D C C, dim(D) = r}.

Notice that the minimum Hamming weight of a code C is di(C). It also follows that
di = |Supp(C)| where k is the dimension of the code. Moreover, d; < d; when i < j
(Proposition 3.1 in [13]).



The higher weight spectrum is defined as
=D c | dim(D) =r, [|D]| =i}
This gives the following higher weight enumerators

W(T) W(T)( ) ZAT z’

A

or in a homogeneous form

WC(’T) (T) ZAT n—i 7,

Then for each r < dim(C') we have a weight enumerator. If C' is a code with dimension k

over F, then W (1) =

(@"—1)(q"—q)---(q"—q"1)?

k k r—
] , where [ ] = @D =0 =) yhich s the number of
T T

subspaces of dimension r in a k& dimensional space.
We adopt the notation [s], = ]} im 0(q —¢’), and for simplicity, we shall sometimes write
0 instead of (0,...,0).

2 Joint Weight Enumerators and Higher Weights

Since ng (x,y) involves all of Wéo)(x, Y), Wél)(x, Y)s-o, Wg) (x,y), a straightforward ap-
plication of invariant theory is not possible. However, we shall use the complete joint
enumerator to produce a Gleason’s theorem for the higher weight enumerator, in a manner
similar to the technique used for binary codes in [4]. We begin with some definitions.

The ¢ fold complete weight enumerator is defined by:

J(Q)( ) = Jég)( = Fg _ Z H l,na(m, "y

V1,...,0g€C aE]Fi

where n,(v1, ..., v,) denotes the number of ¢ such that a = (vy,,...,v,,).

Writing Jg]) (z,y) instead of Jg}) (xo =z, 2, = y(a # 0)), two homogeneous polynomials
W(T) (,y)’s and Jg’) (x,y)’s are related as in the following, which is proven in [4] for the
binary case.

Theorem 2.1 For C a code over I,

g

(1) T (x,y) = [gh W (x,y).

r=0



Proof. We have

Wévg) (.T, y) _ Z Z,no(vl,...,vg)yn—no(m,...,vg)

V1,0, €C

_ § E xno(m,...,vg)yn—no(vl,...,z)g)

r=0 VY 5eens vg€eC
dim(vy ,...,vg) ="

= > Y #H{v.....v9) €C%(vr, ... v,) = D}

r=0 DccC
dim D=r

% xno(vl ,...,vg)yn—no(vl yeryUg) ]

As in [4], we can show that the number #{(vi,...,v,) € C% (v1,...,v,) = D} is equal to
lg],. Hence we have

g
WC(?)(w’y) — Z Z [g]rl,no(vl,...,vg)yn—no(vl,...,vg)

r=0 DccC
dim D=r

g

= Sl 3 anelyiol

=0 DcC
dim D=r

<

= > gl HE (@)

This completes the proof of Theorem 2.1. a

The MacWilliams type identities for higher weights, proven in [4] is a direct corollary of

this theorem. The MacWilliams relations are given with a different proof in [6], [13].
Theorem 2.2 Let C' be a code over Fy of length n. The following identity holds:

z ifa=0

W @y = Iy~ Y I |wa=S v facF\{0} . acF

rclf? 0 otherwise
dim F'=g—1
+ Y. (HFCF)dmF =g—1and Pr(vy,...,v5)} — 1)

V1,..,09€C

XInO(vl ,...,Ug)ynfno(vl yeesVUg)

Here Pp(vy,...,v,) means that (vy;,...,v,) € F for any i.



Proof. Theorem 2.2 follows from (1) and

9-1 r ifa=0
@) YW@y = Y I |w={ y ifacF\{0} ;, acF
r=0 rclFy 0 otherwise
dim F=g—1
— Z (h{FCFg|dimF:g—1and Pp(vl,...,vg)}—l)
V100,09 E€C

We shall prove (2). We have

LHS Of (2) = Z Z x"O(Ul ~~~~~ Ug)yn—no(vl ..... vg)

VY vgeC

and on the other hand

RHSof (2) = S gl ynnotvn)

9 Vyeees vgeC
me;IEg_l PFl‘(Ul,.é.].,vg)
B Z (H{F CFjldimF =g —1 and Pr(v1....,v,)} — 1)
V1 yenny ’UgEC

Using these, we check the summation. The element (vq,...,v,) € C9 with dim(vy, ..., v,) <
g — 1 is counted once and only once in the summation of the RHS of (2). Hence we have
the equality

RHS of (2) = LHS of (2).

This completes the proof of (2). O

In the case when g = 2, the last sum of Theorem 2.2 is ¢z™ and we have

x ifa=0
1
WPy = I = 3 I =0y fae PO} pacF |t
2 e 0 otherwise

dim F'=1



Note that

22 = (¢* = 1)(¢* — q)

6 if g =2,
=948 it ¢g=3,
180 ifg=14

For ternary codes this gives:

Corollary 2.3 Let C be a ternary code then

1
WP (y) = 48(Jc (L9, 9,9, 9,4, 9,9, y) — J3(1,0,0,4,0,0,,0,0)
— J&(1,9,4.0,0,0,0,0,0) — J&(1,0,0,0,y,0,0,0,y)

- Jg>(17070707 anvoaya O) + 3)
For quaternary codes this gives:

Corollary 2.4 Let C be a quaternary code then

WP(y) = 180(J(2)(1;y7y,y,y,y;y,y,y,y;y,y,y,y,y,y)

1,y.4.9,0,0,0,0,0,0,0,0,0,0,0,0)
1,0,0,0,%,0,0,0,9,0,0,0,y,0,0,0

ol
(2(

— J2(1,0,0,0,0,9,0,0,0,0,y,0,0,0,0,y
(
(

)
)
— J9(1,0,0,0,0,0,9,0,0,0,0,,0,y,0,0
— J2(1,0,0,0,0,0,0,9,0,y,0,0,0,0,,0

— — ~— ~—

+4).

3 Type III Codes

We notice that for ternary codes any two dimensional subspace generated by v and w consists
of {0, v, 2v, w,w + v, w + 2v, 2w, 2w + v, 2w + 2v}. Any two linearly independent vectors of
this set generate the same two dimensional subcode.

Example 1: Let C be the [8, 4, 3] ternary code ¢3 [11]. Then Wéo) =1, Wél) = 8> 43295,
W = 2% + 1695 + 6437 + 48y5, W = 8y7 + 32y® and WS = 48

Table 3 gives dy and d3 for ternary self-dual codes up to length 24. In particular, values
are given for all ternary self-dual codes up to length 16, and known maximal length codes
up to length 24. See [1], [9], and [10] for notation and a description of the codes.

Theorem 3.1 Let C' be a ternary self-dual code with di = 3¢, then dy > %d =4g.



Proof. Let v and w be ternary vectors and let S = ||(v,w)||. Let n, s be the number of
coordinates where v; = a and w; = .

We have the following equalities:

(3) S =wt(v) +np1 + no2,

(4) S = wt(w) + ny o + nap,

(5) S =wt(v+w)+ny2+naa,

(6) S =wt(2v +w) + ng2 + Ny 1,

(7) S =mng1+ng2+nio+ng+nig+ng1+ngo+ng.

Adding (3) - (6) and subtracting (7) gives
(8) 3S = wt(v) + wt(w) + wt(v + w) + wt(2v + w).

Since the vectors v, w,v + w,2v + w are all in the code they all have weight greater
than or equal to the minimum weight d = 3¢, and have weights a multiple of 3, so that
wt(v) = 3(g + h1), wt(w) = 3(g + ho), wt(v +w) = 3(g + hs) and wt(2v + w) = 3(g + ha),
where h; > 0. Hence

3S = 4(3g) + 3(hy + hy + hs + hy),

which implies
S:4g+h1+h2+h3—|—h4,

giving that dy > 4g. O

In the special case where wt(v) = wt(w) = wt(v + w) = 39 = wt(2v + w) = d; we have
dy = 4g. Very often when there are a large number of minimum weight vectors this occurs
(see Table 3). However, if there are few minimum weight vectors, then the bound can be
exceeded. For example the code (e3pi3)™ has d; =3 and dy = 7.

4 Type IV Codes

A two dimensional code over Fy generated by v; and vq consists of {0, vy, wvy, w2y, Vg, Vg +
V1, Vg + W1, Vo + w3V1, W, WUs + V1, WU + W1, WVg + w21, wWs, W2Vg + V1, WVe + W1, WV +
w?vy, }.

Example 2: Let C' be the [8,4,4] quaternary code eg [11]. Then Wéo) =1, Wg) =
1yt + 56y° + 158, W = 28y8 + 11297 + 2178, W = 8y7 + 773 and WS = 8.

Table 4 gives ds for quaternary self-dual codes up to length 24. In particular, values are
given for all maximal quaternary self-dual codes up to length 18, and several known maximal
codes up to length 24. See [8], [1], and [5] for notation and a description of the codes.



Theorem 4.1 Let C' be a quaternary self-dual code, then dy > %d.

Proof. Let v and u be quaternary vectors and let S = ||(v,w)||. Let n,p be the number
of coordinates where v; = o and u; = 3.
We have the following equalities:

9) S = wt(v) +np1 + now + Nogm,

(10) S = wt(u) +n1o + neo + N0,

(11) S=wt(v+u)+ni1+n,, + gz,

(12) S = wt(wv + u) + ni1 gy + Nz + N,

(13) S = wt(Wv + u) + N1y + N1 + N ws

(14) S =mno1 +now + Now + N0 + N + N1+ N w

+ s +Niw +Nuw T Neig + w1 + New-
Adding (9) - (13) and subtracting (14) gives

45 = wt(v) + wt(u) + wt(v + u) + wt(wv + u) + wt(v + u).

Since the vectors v, u,v + u,wv 4+ u,wv + w are all in the code they all have weight
greater than or equal to the minimum weight d, so that wt(v) = dy + hy, wt(u) = dy + ha,
wt(v+u) = dy + hg wt(wv + u) = dy + hy and wt(wv + u) = dy + hs, where h; > 0. Hence

A4S =5d+ > hi,

which implies
) ) Z

giving the result. O
This result is not as clean as that for ternary codes because for the bound to be met d

must be divisible by 4, which is not as common and it requires more for all of the h; to be
0.

5 Invariants and Gleason Type Theorems

Let £ be a complex cubic root of unity and define

1 1 1
TS = 1 5 52 )
SIS



and

11 1 1
1 1 -1 -1
T, =
1 -1 1 -1
1 -1 =1 1
The following MacWilliams relations are well known. Let Cy,Cy, ..., Cy be codes in F}'
and let C denote either C' or C*. Then
1 N
J61.6,.0,(Xa) = = (@, T°¢) Jo,....cp(Xa)

where

1 ifC=Ch
and Tis T3 it g =3 and T is T}, if ¢ = 4.
Let S5 = %Tg, Sy = %T4 and [, denote the identity of order /.
If C is a ternary self-dual code then J9(X) is held invariant by

%:{0 it &' = O,

M3 = oL,

where

1 ifieA
54 (i) = *
a0 {OiH¢A‘

and A runs over all subsets of {1,2,...,g}. Denote the set of all such matrices M3 by Q3.

In addition, J9(X) is held invariant by /3, since the length of the code is divisible by 4.
Since the weight of every vector in a ternary self-dual code is divisible by 3, J9(X) is

Ughz{fiﬁeB

held invariant by Kpg where

0 ifi¢ B’
and (Kpg);; = 0if ¢ # j, where B runs over all subsets of {1,2,..., g} that give the weight
of a vector, that is J(xg(1),...,xB(39 — 1)) = wt(v) for some vector in C. Denote the set

of all such matrices K3 hy €23.
If C is a self-dual code over Fy then J9(X) is held invariant by

where
1 ifie A
04(2) =
ald) {01M¢A’
and A runs over all subsets of {1,2,...,g}. Denote the set of all such matrices M} by Qf.
In addition, J9(X) is held invariant by —I4 since the length of the code is divisible by 2.

9



Since the weight of every vector in a Type IV code is divisible by 2, J9(X) is held

invariant by Kz where
-1 ifieB
K4 i s
() { 0 ifi¢B
and (Kp);; = 0if i # j, where and B runs over all subsets of {1,2,...,g} that give the

weight of a vector, that is J(xp(1),...,x5(49 — 1)) = wt(v) for some vector in C. Denote
the set of all such matrices K7 by Q3.
Define the following groups:

G = (3,03, ils)

GZ = <Q¢11, Q%a ZJ49>

Let R] be the ring of invariants for G and R} be the ring of invariants for G4. Then we
have the following theorems.

Theorem 5.1 Let C be a ternary self-dual code. Then Wé?) (y) is of the form

= U2y vy 00,90, y) — IS (1,0,0,9,0,0,,0,0)

Jg)(]-ayay* Oa O: 0707 070) - Jg)(L 0707 anaoaoaoiy) - J((,?)(LO; anaoaya O:ya 0) + 3)7
where J is an element of R3.

Proof. Follows from Theorem 2.3. O

Theorem 5.2 Let C' be a quaternary self-dual code. Then WC(?) (y) is of the form

5 (J@)(lyyyyyyyyyyyyyyy)

- 1,4.v.v.0.0,0,0,0,0,0,0,0,0,0,0)
1,0,0,0,y,0,0,0,y,0,0,0,y,0,0,0)
1,0,0,0,0,y,0,0,0,0,4,0,0,0,0,y)
)
0)

N
ﬂ%
J2(
— J9(1,0,0,0,0,0,4,0,0,0,0,y,0,y,0,0

(

- J(2 1 07 07 O’ 07 O? 07 y? 07y7 07 07 07 07 y7 +4)
where J is an element of R3.
Proof. Follows from Theorem 2.4. O

10



Let
1 1 ¢?—1
79 = — .
a vVt ( 1 —1 )

The fact that this matrix holds Jég) (x,y) invariant for a self-dual code follows directly by
collapsing variables of the MacWilliams relation for the complete joint weight enumerator.

If C'is a ternary self-dual code then Jé?) (z,y) is held invariant by 73 and by il since
the length is divisible by 4.

If C'is a Type IV code then J((jg) (z,y) is held invariant by 7 and by —I; since the length
is divisible by 2.

Define the following groups:

g5 = (I3, 1)

gi = (T{. - I2)
Let R be the ring of invariants for G and R be the ring of invariants for Gj.
Given the relationship stated in Theorem 2.1, namely that J((Jg ) (z,y) =27, [g]TWéT) (x,y),
we have the following theorem.

Theorem 5.3 Let C be a code over Fy, with ¢ =3 or 4, then

Y

> [gh W (,y) € Ry

r=0

where k = 3 for ternary codes and k = 4 for quaternary codes.

6 Rings of the Higher Weight Enumerators

Let QITEFT(’) be a graded ring generated by the higher weight enumerators Wg) (z,y) (0<r<yg)
q

of self-dual codes C' over F,. In this section, we determine the structures of Qﬂﬁg) for g = 3
q
and 4.

Theorem 6.1 We have
0) _ 4
QIIFB = C[z2"],
Wy = Cla*.y") (1@ 2y’ @ (29°) @ (29°)°) .

Proof. The first assertion follows from the fact that Wéo) (x,y) = 2™ for any code C and
that a self-dual ternary code exists if and only if n =0 (mod 4).

11



We shall prove the second assertion. For any ternary self-dual C, Jg ) (z,y) can be written
as a polynomial of z* + 8zy3 and z'? + 264x°%y° + 44023y? + 24y'? (Gleason, see Theorem 28
in [2], p. 202). From this fact, we know that Qﬂ%i is a finitely generated ring by 2, zy3, y!?
over C. Using the Grébner basis (¢f. [3], [12]), we have
Qﬂ%g = Clo* zy°,y"
= Cl'y? 1oy’ @ (2y°) @ (2y°)°) .

This completes the proof of Theorem 6.1. O

In order to determine the ring QIIEFQ), g > 2, we need two lemmas.
3

Lemma 6.2 For any g > 1 and for any ternary self-dual code C', we have
Al = Af = A? =0.

Proof. Since the weight of any element of a ternary self-dual code is divisible by three, we
have AJ(C) = A3(C) = A}(C) =0 for any g > 1.

We shall show that AZ(C) = 0 for ¢ > 2. For g = 2, the weight of two linearly
independent elements is four or five and this cannot occur. For g > 3, we take three linearly
independent elements which should have the following forms:

V1 = (*7*)*70: 0)"')7
vg = (0, %, %,%,0,...),

V3 = (07*7*707*a"')3

where x denotes a non-zero element of F3. Since the weight of the sum vy + vy is divisible
by three, we may put

vy = (*,a,b,0,0,...),

vg = (0, —a, ¢, *,0,...),

where a # 0,b+ ¢ # 0. The same argument applies to the sum v, + v3 and v; 4+ v3 and we
have three cases:

Case 1: v3 = (0,a, —b,0, %, ...). The weight of vy +v9+v3 = (%, a, ¢, *,*,...) is five. This
cannot occur since the weight is divisible by three because of self-duality.

Case 2: v3 = (0, —a, —c, 0, %, ...). The weight of vy + vy + v3 = (*, —a, b, *, *,...) is five.
This cannot occur.

Case 3: vy = (0,d,=b,0,%,...),a+d # 0,b = ¢. The weight of vy + vy + v3 =
(%,d,b,*,%,...) is five. This cannot occur.

This completes the proof of Lemma 6.2. a

12



Lemma 6.3 Any element of the set {0,3,4,1 € Z>¢} can be written once and only once in
the form 4a + 3b, a € Z>o, b€ {0,1,2,3}.

Proof. Trivial. O

Theorem 6.4 For g > 2, we have
W) = Cla*,y'] (L@ 2y’ @ (29" @ (2y*)*) .

Proof. The ternary tetra code t4 has Wt(:)(x,y) = y*. Hence QU%F) contains the ring
3
Clz*, y*, zy?®] which can be written as

(15) Clz*, y*, 2y’ = Clz*, y'] (1 ® 2y’ @ (23”)* @ (29°)?) .

In order to prove the equality of two rings, Qﬂ% and C[z4, y*, xy?], it suffices to show that, for
3 7
any ternary self-dual code C' of length n = 4¢, any term a™'y" whose coefficient A7 doesn’t
vanish is contained in the right hand side of (15). By Lemma 6.2, we have i # 1, 2, 5. In
this case, there exist uniquely a € Z>q and b € {0, 1, 2, 3} such that i = 4a + 3b. Hence
" yz £L'4C (4a+3b) y4a+3b

= (@) 7"y (2?)",

and this is contained in the right hand side of (15). This completes the proof of Theorem

6.4. .
Similar results hold for the QﬁEFi
Theorem 6.5 We have
Wy = Cla?),

)
4
QU](FIQ = C[z?, v7.

For g > 2, we have

W) = Cla*, (1 @ 2y°).
Proof. The first assertion follows from the fact that Wéo) (z,y) = 2" for any code C' and
that a self-dual quaternary code exists if and only if n =0 (mod 2).

We shall prove the second assertion. For any quaternary self-dual C, J((;1 )(x, y) can be
written as a polynomial of x2 + 3y? and z° + 45z%y* + 18y°® (Theorem 30 in [2], p. 203).

13



From this fact, we know that Qﬂ% is a finitely generated ring in 22, y? over C and the result
follows.

Finally, we shall show the case for g > 2. The hexacode hg has W,E? (x,y) = 62y° + 159°.
Hence Qﬁf& contains C[z?, y?, xy®], which can be written as

(16) Cla®, 9%, 2y’] = Cla®, y*|(1 @ 2y).

In order to prove the equality of the two rings, QU% and C[z?, 32, 2y°], we need two claims.
4

Claim 1: A{ = A =0 for any g > 1 and for any quaternary self-dual code.

Claim 2: Any element of the set {0,2,l € Z>4} can be written once and only once in the
form 2a + 5b, a € Z>g, b€ {0,1}.

These claims correspond to Lemmas 6.2, 6.3 in the F3 case, respectively and so we omit the
proofs. Now take, for any quaternary self-dual code C of length n = 2¢, any term 2" %y
whose coefficient A? doesn’t vanish. By Claim 1, we have that ¢ # 1, 3. In this case, there
exist a unique a € Zso and b € {0, 1} such that ¢ = 2a + 5b. Hence we have

Pt yz xQC (2a+5b)y2a+5b

= (@) () (2",

and this is contained in the right hand side of (16).
This completes the proof of Theorem 6.5. O
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Table 1: Higher Weight Enumerators for the [12, 6, 6] Golay Code

wl | w2 w3 w4 | W5 | W6 | weight 4
132 6
495 8

220 | 880 220 9
2970 | 1980 66 10

3960 | 9900 | 1320 | 12 11

12 | 2706 | 21780 | 9625 | 352 1 12

Table 2: The Genus 6 Weight Enumerator for a the [12,6, 6] Golay Code

coefficient of 7 weight 4
1 0
96096 6
261621360 8
84184100000 9
18386225938080 10
2433667533897600 11
147642497091345984 12
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Table 3: Ternary Self-Dual Codes with n < 24

n Code di dy ds
4 4 3 4

8 2 3 4 7
12 5t 3 6 8
12 e3 3 4 7
12 J12 6 8 9
16 o 3 4 7
16 (etes))™ 3 4 7
16 J12€4 3 4 9
16 (esfy)™ 3 6 8
16 (e2g10)t 3 6 9
16 (espiz)t 3 7 9
16 ot 6 8 10
20  10f, 6 8 11
20 4fs+2fs 6 8 10
20 5f4 6 8 10
20  4f; 6 8 11
20 20+f 6 8 9
20 2 f10 6 8 9
24 XQo3 9 12 14
24 S(24) 9 12 14
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Table 4: Quaternary Self-Dual Codes with n < 24

n Code dy ds
4 i2 2 4
6 he 4 5
8 es 4 6
10 df, 4 5
10 ext 4 6
12 dy 4 6
12 (ere5)™ 4 5
12 dgt 4 6
12 dit 4 7
14 df, 4 6
14 est 4 6
14 (dgesfr)* 4 5
14 (e2f)* 4 5
14 (dgdg)t 4 6
14 (2f)t 4 6
14 (dgd)t 4 6
4 (dif2)t 4 7
14 (Bt 4 7
14 ql4 6 8
16 ot 6 8
16 (1) 6 8
16 11 6 8
16 el 6 8
18 Sig 8 10
20 Cao 8 10
22 Co 8 10
24 Oy 8 12
24 Coyo 8 10
24 Cyys 8 11
24 Coyy 8 10
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