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The purpose of this paper is to study the dimension formula of the invariant ring
of the specified group H5. This ring appears in the theory of Siegel modular
forms and in coding theory. As an application of our dimension formula we
give another proof of the fact the associated g-th weight enumerators of the 9
self-dual doubly-even codes of length 24 are linearly independent if and only if
g ≥ 6, which is proved in a recent paper by Oura-Poor-Yuen.

Introduction

Let F2 = {0, 1} be the field of two elements. We will assume the order of
elements of F

g
2 is (0, · · · , 0, 0), (0, · · · , 0, 1), (0, · · · , 1, 0), · · · , (1, · · · , 1, 1) when

we need.
Define 2g variables Fa for a ∈ F

g
2. Let C[Fa : a ∈ F

g
2] be the polynomial ring

in these variables. The finite subgroup Hg , which we shall define in the next
section, of GL(2g,C) naturally acts on this polynomial ring. Let Rg be the Hg-
invariant subring of C[Fa : a ∈ F

g
2] and Rm

g be the vector space of Hg-invariant
polynomials of homogeneous degreem. Runge

rungeI
[13] proved that the ring of Siegel

modular forms of even weight for Γg = Sp(2g,Z) is the normalization of the
quotient ring of Rg by an ideal of “theta relations” in its field of fractions. We,
however, do not go into details of the theory of Siegel modular forms. Besides
the space Rm

g ,m ≡ 0 (mod 8), is closely connected to coding theory which we
shall discuss next.

Let C be a self-dual doubly-even code of length m, i.e. a linear subspace of
Fn

2 with the inner product a ·b =
∑
aibi, such that C coincides with its dual and

such that the number of non-zero coordinates of every element of C is congruent
to 0 (mod 4). It is known that a self-dual doubly-even codes of length m exists
if and only if the length m is multiple of 8. Two codes are said to be equivalent
if one of them coincides with another by a permutation of coordinate positions.
The non-equivalent self-dual doubly-even codes are classified upto m = 32. The
numbers of them are

1(m = 8), 2(m = 16), 9(m = 24), 85(m = 32).

In this paper we are mainly interested in the case where m = 24 and they are
denoted by

d2
12, d10e

2
7, d

3
8, d

4
6, d24, d

6
4, g24, d16e8, e

3
8.

In particular g24 is the extended Golay code of length 24. We refer to
cs
[5] for a

detailed description of coding theory.
The g-th weight enumerators of a code C is

W
(g)
C (F ) =

∑

x∈Cg

m∏

i=1

Frowi(x).
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We write WC unless the dependence on g is noteworthy. The problem we are
interested in is when the g-th weight enumerators of all self-dual doubly-even
codes of the fixed length m are linearly independent. Since equivalent codes
have the same weight enumerator, we have only to deal with non-equivalent
codes. The first non-trivial case is m = 16. Duke

duke
[1] and Runge

rungeI
[13] noticed

that the g-th weight enumerators of the 2 self-dual doubly-even codes of length
16 are linearly independent if and only if g ≥ 3. The next case where m = 24 is
treated in

opy
[12]. Actually it is proved that the g-th weight enumerators of the 9

self-dual doubly-even codes of length 24 are linearly independent if and only if
g ≥ 6. We give another proof of this theorem in this paper.

The theorem of Runge
rungeIII
[15] says that the space Rm

g ,m ≡ 0 (mod 8), can be
spanned by the g-th weight enumerators of self-dual doubly-even codes of length
m. This fact is one of the reason that coding theory plays a significant role in
fo
[6],

opy
[12]. We might point out that the abstractly defined space Rm

g is identified
with the explicitly defined space.

On the groups H5 and Sp(10, 2)

We collect the definitions and some properties of the groups which we need
later.

We recall the symplectic group Sp(10, 2) of degree 5 over F2. Let ∆ =
{±2ξi,±ξi ± ξj(i < j)|1 ≤ i, j ≤ 5} be the root system of type C5, and we
choose ξ1 − ξ2, ξ2 − ξ3, ξ3 − ξ4, ξ4 − ξ5, 2ξ5 for a fundamental system Π of roots.
We denote by ∆+ the set of positive roots with respect to Π. Let Eij be the
matrix whose (i, j)-entry is 1 and all the other entries are 0. For 1 ≤ i, j ≤ 5
we put

xξi+ξj
= 1 +Ei,5+j +Ej,5+i, (i 6= j)

xξi−ξj
= 1 +Ei,j +E5+j,5+i(i < j)

x2ξi
= 1 +Ei,5+i,

x−r = txr(r ∈ ∆)

Note that the above matrices in the right-hand side are defined over the field of
two elements. The symplectic group Sp(10, 2) is generated by xr(r ∈ ∆).

The group H5 is generated by the elements T5 and DS = diag (iS[a]) for

integral symmetric S, where (T5)a,b =
(

1+i
2

)5
(−1)a·b. Let H5 act on N5/〈i〉 ∼=

F5
2 by conjugation. This induces a surjective homomorphism

ψ : H5 → Sp(10, 2)
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ψ(B) = 110, B ∈ N5,

ψ(Ã) =

(
A 0
0 t(A−1)

)
, A ∈ GL(5, 2),

ψ(T5) =

(
0 1
1 0

)

ψ(DS) =

(
1 S
0 1

)

Here we need to explain the notation Ã. Label the basis of C25

as ev, v ∈ F5
2.

For A ∈ GL(5, 2) we define the unitary transformation Ã ∈ C25

by evÃ = evA.
We have given the definitions of H5 and Sp(10, 5) and the homomorphism

between them. In order to proceed our computation conveniently we give some
more information. Let eij be the 5 × 5 matrices whose (i, j) entry is 1 and all
the other entries are 0. For 1 ≤ i, j ≤ 5 we put

Xξi+ξj
= Deij+eji

,

Xξi−ξj
= 1̃ + eij(i 6= j)

X2ξi
= Deii

X−r = T5XrT5(r ∈ ∆+)

Wr = XrX−rXr(r ∈ Π)

Note that the above matrices in the right-hand side are defined over the field of
complex numbers. We have ψ(Xξi+ξj

) = xξi+ξj
, ψ(Xξi−ξj

) = xξi−ξj
, ψ(X2ξi

) =
x2ξi

, ψ(X−r) = x−r, and ψ(Wr) = wr .
The orders of these groups are not necessary in this paper but we give them

for the convenience.

|N5| = 4, 096 = 212,

|Sp(10, 2)| = 24, 815, 256, 521, 932, 800 = 22536527 · 11 · 17 · 31,

|H5| = 101, 643, 290, 713, 836, 748, 800 = 23736527 · 11 · 17 · 31,

198× |N5| = 811, 008.

The meaning of the last number above will be clear in the course of our com-
putation. The number 198 is the number of conjugacy classes of Sp(10, 2).

The dimension formula

Theorem. The dimension formula of the invariant ring of H5 is given by
∑

m

(dimRm
5 ) tm = 1 + t8 + 2t16 + 2t20 + 8t24 + 8t28 + 34t32 + 60t36

+ 203t40 + 553t44 + 2063t48 + 7359t52 + 30811t56

+ 127416t60 + 541644t64 + 2235677t68 + 8966371t72 + · · ·

=
N

D
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Proof. First we investigate the conjugacy classes of Sp(10, 2). More precisely
we need a representative and an order of each class. There exist 198 conjugacy
classes in Sp(10, 2). This is carried out by

gap
[7]. Since we already know the ho-

momorphism ψ : H5 → Sp(10, 2) with Kerψ = N5 explicitly, we can decompose
H5/N5 into conjugacy classes Z0, Z1, · · · , Z197. If we write a representative of
each class Zi as ziN5, the dimension formula of the invariant ring is computed
as follows.

∑

m

(dimRm
5 ) tm =

1

|H5|

∑

σ∈H5

1

det(1 − tσ)

=
1

|H5|

197∑

i=0

∑

n∈N5

|Zi|

det(1 − tzin)

= 1 + t8 + 2t16 + 2t20 + 8t24 + 8t28 + 34t32 + 60t36 + · · · .

This completes the proof of the theorem.

Corollary. The g-th weight enumerators of the 9 self-dual doubly-even codes

of length 24 are linearly independent if and only if the genus g is greater than

5.
Proof. We already know that the dimension of the space R24

5 is 8. Here we
observe that a linear relation among weight enumerators in genus g remains in
genus g − 1. This is a consequence of Φ operator

Φ(Fa) =

{
Fb if a = (b0),

0 if a = (b1).

Therefore in order to prove the corollary, we have only to show that the 6-th
weight enumerators of the 9 codes are linearly independent. This is obtained
by the fact that the 9 × 9 matrix M which we shall give in the next section is
non-singular. This completes the proof of Corollary.

Some coefficients of W
(6)
C ’s

Determination of all admissible monomials becomes complicated when the
associated genus and length increase, however, it is not the case if we need only
a few of them. For example, arbitrary g elements of a self-dual doubly-even
code gives an admissible monomial. Another construction is “lifting” from one
less genus. Let (a1, a2, . . . , a2g−1) be an admissible monomial of genus g − 1.
Then (a1, 0, a2, 0, . . . , a2g−1 , 0) is admissible in genus g.

We give the 9 admissible monomials below. The choice of monomials is
arbitrary, but the resulting matrix M must be non-singular (as a matter of
fact, we can do this). The first 8 monomials is obtained from the admissible
monomials in genus 5. Only in the following table we use the convention ab =
a, a, . . . , a︸ ︷︷ ︸

b

.
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(062, 24, 0),

(032, 4, 029, 20, 0),

(2, 029, 2, 0, 18, 029, 2, 0),

(1, 0, 1, 025, 1, 0, 1, 0, 17, 0, 1, 025, 1, 0, 1, 0),

(028, 2, 0, 2, 0, 16, 027, 2, 0, 2, 0),

(024, 1, 0, 1, 0, 1, 0, 1, 0, 16, 023, 1, 0, 1, 0, 1, 0, 1, 0),

(2, 029, 2, 03, 2, 0, 2, 0, 2, 023, 14, 0),

(2, 07, 12, 019, 2, 05, 2, 0, 2, 0, 2, 021, 2, 03),

(1, 0, 1, 013, 1, 0, 1, 04, 4, 012, 22, 06, 1, 0, 1, 05, 14, 05, 3, 2, 1)

The following 9×9 matrixM is rank 9. The rows correspond to the 9 self-dual
doubly-even codes of length 24. The columns correspond to the 9 admissible
monomials given above. The order of columns and of rows are the one given in
this paper. The matrix entry is the coefficient of the weight enumerator of the
corresponding code at the corresponding monomial.

M =




1 30 240 0 720 0 1440 1440 16588800
1 24 144 336 120 0 120 0 27095040
1 18 72 0 72 0 0 0 23887872
1 12 24 0 0 0 0 0 18164736
1 66 1320 0 11880 0 95040 665280 0
1 6 0 0 0 0 0 0 7741440
1 0 0 0 0 0 0 0 0
1 42 504 1344 1848 1344 6720 20160 0
1 42 504 4032 504 4032 0 0 0




From the matrix M , we know that the dimension of the space R24
5 is greater

than or equal to 8, but we can not conclude that it is exactly 8.

All linear relations among W
(g)
C ’s, g ≥ 3

We collect all relations among the g-th weight enumerators of the 9 self-dual
doubly-even codes of length 24, g ≥ 3. We refer to

co
[4] for the cases g = 1, 2.

The dimensions of R24
g are as follows.

g 1 2 3 4 5 g ≥ 6
dimR24

g 2 3 5 7 8 9

g = 3 We take WC1
,WC2

,WC3
,WC4

,WC5
as a basis.
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54WC6
= 30WC1

− 135WC3
+ 160WC4

−WC5
,

72WC7
= 132WC1

− 495WC3
+ 440WC4

− 5WC5
,

9WC8
= 6WC1

+ 36WC2
− 54WC3

+ 20WC4
+WC5

,

27WC9
= −66WC1

+ 324WC2
− 351WC3

+ 116WC4
+ 4WC5

,

g = 4(Proposition 1.5
fo
[6]) We take WC1

,WC2
,WC3

,WC4
,WC6

,WC7
,WC8

as a
basis.

WC5
= 66WC1

− 495WC3
+ 880WC4

− 594WC6
+ 144WC7

,

WC9
= −14WC1

+ 70WC3
− 112WC4

+ 70WC6
− 16WC7

+ 3WC8
.

g = 5(
opy
[12]) We take WC1

,WC2
,WC3

,WC4
,WC5

,WC6
,WC7

,WC8
as a basis.

99WC9
= −924WC1

+3465WC3
−4928WC4

−7WC5
+2772WC6

−576WC7
+297WC8

.
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