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Abstract

We show that the ring of the weight enumerators of a self-dual doubly even code d+n

in arbitrary genus is finitely generated. Indeed enough elements to generate it are given.

The latter result is applied to obtain a minimal set of generators of the ring in genus

two.

1 Introduction

The weight enumerator plays an important role in coding theory and has connections with

other branches in mathematics. We recall some of them to see the background of this paper.

Let C be a self-dual doubly even (Type II, for short) code of length n. The weight enumerator

WC(x, y) =
∑
v∈C

xn−wt(v)ywt(v)

has invariant properties. The so-called MacWilliams identity is described as

WC(x, y) =WC(
x+ y√

2
,
x− y√

2
)

and the doubly evenness gives

WC(x, y) =WC(x,
√
−1y).

These being said, the weight enumerator of a Type II code is an element of the invariant ring

C[x, y]G = {f(x, y) ∈ C[x, y] : σf = f ∀σ ∈ G}

of the finite group G where G is of order 192 generated by

1√
2

(
1 1
1 −1

)
,

(
1 0
0

√
−1

)
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and

σf(x, y) = f(ax+ by, cx+ dy), σ =

(
a b
c d

)
.

A remarkable fact is that the converse is also true, that is, Gleason [3] showed that the invariant

ring C[x, y]G is generated by the weight enumerators of Type II codes. Indeed we have

C[x, y]G = C[Wd+
8
(x, y),Wd+

24
(x, y)].

We shall describe some consequences of this equality. Since the degrees of the generators are

8 and 24, length of a Type II code is a multiple of 8. Non-existence of an extremal Type II

code for sufficiently large n also follows from the above equality.

We observe that Wd+
8
(x, y) and Wd+

24
(x, y) are algebraically independent over C. A finite

group having such a property (i.e., whose invariant ring is generated by the algebraically

independent elements over C) is called a finite unitary reflection group. See [13].

The generalization of the above correspondence is investigated in, for example, [12, 7].

The invariance property of the weight enumerator gives rise to the relation with the modular

forms. See [1, 2, 12]. In fact, the weight enumerator of a Type II code of length n is mapped

under the theta map to the Siegel modular form of weight n/2 in genus g. The modular form

of weight 8 which is obtained from the difference ψ(g) of the weight enumerators of d+8 ⊕ d+8

and d+16 is of great importance. We just mention two points in genus three. Witt [14] asked

if the modular form obtained from ψ(3) vanishes, and it was affirmatively answered in [5, 6].

Runge [10] showed that the ring of Siegel modular forms for Γ3 is isomorphic to the quotient

ring of the invariant ring of some finite group divided by an ideal (ψ(3)).

Let D(g) be the ring of the weight enumerator of d+n in genus g. This is a subring of the ring

of the weight enumerators of Type II codes. As indicated above, D(1) coincides with the ring

of the weight enumerators. In this paper, we show that D(g) is generated by the elements of

8 ≤ n ≤ 22g+3.

Using this result, we show that D(2) is minimally generated by nine weight enumerators of

lengths
8, 24, 32, 40, 48, 56, 64, 72, 80.

2 Preliminaries

Let F2 = {0, 1} be the field of two elements. Two vector spaces Fn
2 and Fg

2 appear in the

following. For technical reason, an element of Fn
2 is regarded as a row vector, while that of

Fg
2 as a column vector. The space Fn

2 is equipped with the inner product

u · v = u1v1 + · · ·+ unvn, u = (u1, . . . , un), v = (v1, . . . , vn)
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and so is Fg
2

α · β = α1β1 + · · ·+ αgβg, α =

α1

...
αg

 , β =

β1...
βg

 .

Since we deal with only binary linear codes in this paper, we call a subspace of Fn
2 a code

of length n. The weight wt(u) of an element u ∈ Fn
2 is the number of non-zero coordinates of

u. A code C is said to be self-dual if it coincides with its dual

C⊥ = {v ∈ Fn
2 : u · v = 0, ∀u ∈ C},

doubly even if
wt(u) ≡ 0 (mod 4), ∀u ∈ C.

Codes with those two properties (self-duality and doubly evenness) are particularly interesting.

We use the term Type II instead of self-dual and doubly even. It is known that a Type II

code of length n exists if and only if n ≡ 0 (mod 8). The weight enumerator of a code C of

length n in genus g is

W
(g)
C (xα : α ∈ Fg

2) =
∑

u1=(u11,...,u1n)∈C

...
ug=(ug1,...,ugn)∈C

x
u11
...
ug1


x
u12
...
ug2


· · ·x

u1n
...
ugn


.

This definition is consistent with that in the previous section if we put x = x0, y = x1. Since

there does not occur any confusion, we shall use an abridged notation W
(g)
C . It is clear that

W
(g)
C is a homogeneous polynomial of total degree n in C[xα : α ∈ Fg

2]. Let W
(g) be the ring

over C generated by the weight enumerators of all Type II codes in genus g. It is known that

W(g) is the invariant ring of the specified finite group (cf. [3, 12, 7]). In particular W(g) is

finitely generated. In Introduction we discussed this topic for g = 1.

Next we recall a Type II code d+n of length n for n ≡ 0 (mod 8) and its weight enumerator.

It is nice to start with a repetition code Rn of length n. The dual code of Rn can be described

as
R⊥

n = {(u1, . . . , un) ∈ Fn
2 : u1 + · · ·+ un = 0}

which has a generator matrix 
1 1 0 · · · 0
1 0 1 · · · 0

. . .

1 0 0 · · · 1

 .

The following n/2× n matrix is a generator matrix of d+n , that is, the n/2 row vectors form a

3



basis of d+n : 

11 11 00 00 · · · 00 00
11 00 11 00 · · · 00 00
11 00 00 11 · · · 00 00

. . .

11 00 00 00 · · · 00 11
10 10 10 10 · · · 10 10


.

The code d+n is then characterized as

d+n = {(α1 + γ, α1, α2 + γ, α2, . . . , αn/2 + γ, αn/2) : α1, · · · , αn/2, γ ∈ F2, α1 + · · ·+ αn/2 = 0}.

It is known to be Type II. The weight enumerator of d+n in genus g is expressed as

W
(g)

d+
n

=
1

2g

∑
β,γ∈Fg

2

 ∑
α∈Fg

2

(−1)α·βxα+γxα

n/2

.

We can find this formula of genus two in [2]. For the completeness of this paper, we add a

proof. We have

RHS =
1

2g

∑
γ∈Fg

2

 ∑
β∈Fg

2


n/2∏
i=1

 ∑
αi∈Fg

2

(−1)α
i·βxαi+γxαi




=
1

2g

∑
γ∈Fg

2

 ∑
α1,...,αn/2∈Fg

2

β∈Fg
2

(−1)(α
1+···+αn/2)·βxα1+γxα1 · · ·xαn/2+γxαn/2

 .

For a fixed γ, we divide the summation as∑
α1,...,αn/2∈Fg

2

β∈Fg
2

=
∑

α1+···+αn/2=0
β

+
∑

α1+···+αn/2 ̸=0
β

.

From the
∑

α1+···+αn/2=0
β

-part, we get

2g
∑

α1,...,αn/2∈Fg
2

α1+···+αn/2=0

xα1+γxα1 · · ·xαn/2+γxαn/2

because of (−1)(α
1+···+αn/2)·β = 1 for any β ∈ Fg

2. Next fix α
1, . . . , αn/2 such that α1 + · · ·+

αn/2 ̸= 0. Then the number of β ∈ Fg
2 which is orthogonal to α1+· · ·+αn/2( ̸= 0) is 2g−1. This

could be easily understood if you consider the dual code of a code generated by α1+ · · ·+αn/2.
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n 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128

dimW
(2)
n 1 1 3 4 5 8 10 12 17 21 24 31 37 42 52 60

dimD
(2)
n 1 1 2 3 4 6 8 11 15 20 24 30 36 42 51 59

Table: Dimensions of W
(2)
n and D

(2)
n

At any rate, from the
∑

α1+···+αn/2 ̸=0
β

-part, we get 0. Finally we have that

∑
γ∈Fg

2

∑
α1,...,αn/2∈Fg

2

α1+···+αn/2=0

xα1+γxα1 · · ·xαn/2+γxαn/2 .

In view of the characterization of d+n this is nothing else but the definition of the weight

enumerator of d+n in genus g. This proves the formula.

We denote by D(g) the ring generated over C by the weight enumerators of d+n (n =

8, 16, 24, . . .) in genus g. The ring D(g) is a subring of W(g). These rings are graded as

W(g) =
⊕

n≡0 (mod 8)

W(g)
n ,

D(g) =
⊕

n≡0 (mod 8)

D(g)
n .

In [2], W(2) is determined. Let g24 be the Golay code of length 24. It is then

W(2) = C[W
(2)

d+
8

,W
(2)

d+
24

,W (2)
g24 ,W

(2)

d+
40

]⊕C[W
(2)

d+
8

,W
(2)

d+
24

,W (2)
g24 ,W

(2)

d+
40

]W
(2)

d+
32

and the dimension formula is given as follows:

∑
n

dimW(2)
n =

1 + t32

(1− t8)(1− t24)2(1− t40)
.

The dimensions of small n in genus 2 are given in Table.

Finally we recall the following Φ-operator

Φ(xα
0
) = xα and Φ(xα

1
) = 0, α ∈ Fg−1

2 ,

(
α
∗

)
∈ Fg

2.

It is known that the Φ-operator maps the weight enumerator of a code in genus g to that in

genus g − 1.

3 Results

Our first objective is to prove
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Theorem 1. (1) D(g) is finitely generated over C.

(2) A set of generators of D(g) can be obtained from W
(g)

d+
n

for n ≤ 22g+3.

Proof. Since (1) follows from (2), we shall show (2). If we ignore the coefficient
1

2g
, the weight

enumerator of d+n has the form

X
n/2
1 +X

n/2
2 + · · ·+X

n/2
22g

for fixed Xi ∈ C[xα : α ∈ Fg
2]. For a better understanding, we put Zi = X4

i . Here we remind

that n ≡ 0 (mod 8). Then we can say that D(g) is generated by the forms

Z1 + Z2 + · · ·+ Z22g ,

Z2
1 + Z2

2 + · · ·+ Z2
22g ,

...

If we apply the fundamental theorem of symmetric polynomials, we can conclude that D(g)

can be generated by
Zi
1 + Zi

2 + · · ·+ Zi
22g , 1 ≤ i ≤ 22g.

Translating this into the condition of the length n, we have

1 ≤ n

2
· 1
4
≤ 22g.

Hence, in order to generate D(2), it is enough for n to range from 8 through 22g+3 mod 8.

This completes the proof.

We shall examine the case g = 1. From (2) of Theorem 1, we possess four elements of

lengths 8, 16, 24, 32 to generated D(1). Because of(
W

(1)

d+
8

)2

=W
(1)

d+
16

and W
(1)

d+
32

= −5

3

(
W

(1)

d+
8

)4

+
8

3
W

(1)

d+
8

W
(1)

d+
24

,

we get

D(1) = C[W
(1)

d+
8

,W
(1)

d+
24

].

Notice that our argument in this section does not give guarantee as to the fact W(1) = D(1).

We proceed to the higher genus. Table shows that D(2) is strictly smaller than W(2). In

fact, we shall show

Proposition 2. We have that

W(g) = D(g) if and only if g = 1.
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Proof. We have only to prove D(g) ⊊ W(g) for all g ≥ 2. We know that W
(2)
g24 /∈ D(2). Now

suppose that

W (g)
g24 = a

(
W

(g)

d+
8

)3

+ bW
(g)

d+
8

W
(g)

d+
16

+ cW
(g)

d+
24

.

for some g ≥ 3. If we successively apply the Φ-operator to both sides, we get

W (2)
g24 = a

(
W

(2)

d+
8

)3

+ bW
(2)

d+
8

W
(2)

d+
16

+ cW
(2)

d+
24

.

We have thus a contradiction to the fact W
(2)
g24 /∈ D(2). This completes the proof.

We turn our attention to the case g = 2.

Theorem 3. The ring D(2) is minimally generated by nine elements W
(2)

d+
n

of lengths

8, 24, 32, 40, 48, 56, 64, 72, 80.

Proof. By (2) of Theorem 1, D(2) is generated by the weight enumerators W
(2)

d+
n
(x) of d+n of

lengths 8, 16, . . . , 22·2+3 = 128. By calculating the dimension of the homogeneous part for

each n, we get the result. This completes the proof.

Theorem 4. The ring W(2) is the normalization of D(2) in its field of fractions.

Proof. The ring W(2) is generated by theW
(2)

d+
n
’s andW

(2)
g24 . Because of dimW

(2)
88 = dimD

(2)
88 (=

24),
(
W

(2)

d+
8

)8

W
(2)
g24 should be written as a linear combination of the W

(2)

d+
n
’s. We can say more.

The product
(
W

(2)

d+
8

)7

W
(2)
g24 is indeed in D

(2)
80 by calculation. At any rate, we see that W(2)

and D(2) have the same field of fractions. Since it can be shown that W
(2)
g24 is a root of a monic

quadratic equation over D(2) by explicit calculation, W(2) is integral over D(2). We give the

mentioned forms above explicitly in Appendix. Since the invariant ring of a finite group is

normal, so is W(2). This completes the proof.

We conclude this paper with some comments.

As a finite analogue of Eisenstein series, we studied E-polynomials (cf. [8, 9]). Since d+8 is

a unique Type II code of length 8, we obtain the identity between an E-polynomial of weight

8 and W
(g)

d+
8

. The resulting identity seems to be non-trivial.

Let τ be an element of the Siegel upper-half space of genus g. For α, β ∈ Fg
2, we define a

Thetanullwert

θ

[
α
β

]
(τ) =

∑
p∈Zg

exp 2π
√
−1

{
1

2
t

(
p+

1

2
α

)
τ

(
p+

1

2
α

)
+ t

(
p+

1

2
α

)
1

2
β

}
.
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We put fα(τ) = θ

[
α

0

]
(2τ). It is known (cf. [4]) that

(
θ

[
γ
β

]
(τ)

)2

=
∑
α∈Fg

2

(−1)α·βfα+γ(τ)fα(τ).

Under the theta map xα → fα(τ), we derive the theta series ϑ
(g)

D+
n
(τ) of an even unimodular

lattice D+
n from the weight enumerator of d+n in genus g. Therefore we have that

ϑ
(g)

D+
n
(τ) =W

(g)

d+
n
(fα(τ) : α ∈ Fg

2)

=
1

2g

∑
β,γ∈Fg

2

 ∑
α∈Fg

2

(−1)α·βfα+γ(τ)fα(τ)

n/2

=
1

2g

∑
β,γ∈Fg

2

(
θ

[
γ
β

]
(τ)

)n

which was given in [5] without coding theory.

Appendix: Expressions of W
(2)
g24

We shall denote by dn instead of d+n and by C instead of W
(2)
C . For example, d78 means(

W
(2)

d+
8

)7

. In the first formula, if we divide both sides by d78, we get a rational expression of

g24 by the dn’s. In the second formula, we can see that g24 is a root of a monic quadratic

equation over D(2).

d78g24 = 60068993523/2765440 · d80 − 180183157847/10370400 · d240
− 20022997841/553088 · d32d48 − 2860428263/69136 · d24d56
+ 20022997841/414816 · d224d32 − 20022997841/207408 · d8d72
+ 240240240009/1382720 · d8d32d40 + 20022997841/103704 · d8d24d48
− 20022997841/233334 · d8d324 + 361030987317/2212352 · d28d64
− 721615331745/4424704 · d28d232 − 180492013471/518520 · d28d24d40
− 11605081037/138272 · d38d56 + 162089538457/829632 · d38d24d32
− 6162271423/51852 · d48d48 + 98965418167/622224 · d48d224
+ 1437603895651/6913600 · d58d40 − 1819759052111/33185280 · d68d32
− 1943814249461/12444480 · d78d24 + 119236217012539/2986675200 · d108 .
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g224 = −53361/9728 · d48 + 41699/4864 · d224 + 2863707/124640 · d8d40
− 55228635/1595392 · d28d32 + 200123/199424 · d38d24 + 61863307/7976960 · d68
+ (161/152 · d24 − 3289/12464 · d38)g24.
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