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Abstract. In the present paper, we introduce the concept of har-
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1. Introduction

Construction of the matroids from various algebraic structures, like
graphs and matrices (see [24]), is one of the most important problems
in the theory of matroids. It is Crapo [11] who pointed out this prob-
lem by extending the definition of Tutte polynomial T (M ;x, y) to a
matroid M which was introduced by Tutte [27, 28, 29] for a graph.
Later, Greene [13] proved a remarkable connection between the weight
enumerator WC(x, y) of an [n, k] code C and the Tutte polynomial of
its matroid MC ; this identity, which is known as Greene identity, is as
follows:

WC(x, y) = (x− y)kyn−kT

(
MC ;

x+ (q − 1)y

x− y
,
x

y

)
.

As an application of the above relation, Greene [13] also gave an alter-
native proof of the MacWilliams identity for the weight enumerator of
an [n, k] code.

Delsarte [12] introduced the concept of discrete harmonic function
on a finite set. In the study of coding theory, Bachoc [2, 3] associated
the discrete harmonic function to codes by introducing the concept of
harmonic weight enumerator WC,f of a code C, and gave a striking
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generalization of the MacWilliams identity. Tanabe [26] studied the
Fq–analogue of the harmonic weight enumerators of codes.

In this paper, we introduce the notion of the harmonic Tutte poly-
nomials associated with a harmonic function of a certain degree, and
give a Greene-type identity which we call the generalized Greene iden-
tity, which relates the harmonic weight enumerator of a code and the
harmonic Tutte polynomial of the matroid corresponding to the code.
Moreover, as an application of the generalized Greene identity, we give
a combinatorial proof of Bachoc’s MacWilliams-type identity which is
stated in Theorem 2.1.

This paper is organized as follows: In Section 2, we studied most
of the basic definitions and properties in coding theory and matroid
theory used in this paper. In Section 3, we define the harmonic Tutte
polynomial, and obtain a relation between the harmonic Tutte polyno-
mials of a matroid and its dual (Theorem 3.1). Moreover, we reinterpret
the definition of harmonic weight enumerators of codes (Theorem 3.2).
In Section 4, we give a generalization of Greene identity (Theorem 4.1)
with an application in the proof of the MacWilliams identity for har-
monic weight enumerator. Finally, in Section 5, we conclude the paper
with some remarks.

2. Basic definitions and notions

In this section, we give some basic definitions and properties of codes
and matroids that are necessary for this paper. We follow [14, 17, 23,
24, 26] for the discussions. Moreover, we recall some definitions and
properties of the (discrete) harmonic functions; see [2, 12, 26] for more
detail.

2.1. Discrete harmonic functions. Let E := {1, 2, . . . , n} be a finite
set of first n positive integers. Let 2E denote the set of all subsets of
E. We define Ed := {X ∈ 2E | |X| = d} for d = 0, 1, . . . , n. We denote
by R2E, REd the real vector spaces spanned by the elements of 2E, Ed,
respectively. An element of REd is denoted by

(1) f :=
∑
Z∈Ed

f(Z)Z

and is identified with the real-valued function on Ed given by Z 7→
f(Z). Such an element f ∈ REd can be extended to an element f̃ ∈
R2E by setting, for all X ∈ 2E,

(2) f̃(X) :=
∑

Z∈Ed,Z⊂X

f(Z).
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If an element g ∈ R2E is equal to some f̃ , for f ∈ REd, we say that
g has degree d. We call the vector space REd the homogeneous space
of degree d, and denoted by Homd(n). The differentiation γ is the
operator defined by the linear form

(3) γ(Z) :=
∑

Y ∈Ed−1,Y⊂Z

Y

for all Z ∈ Ed and for all d = 0, 1, . . . n, and Harmd(n) is the kernel
of γ:

Harmd(n) := ker
(
γ
∣∣
REd

)
.

Remark 2.1 ([2, 12]). Let f ∈ Harmd(n). Then γd−i(f) = 0 for all
0 ≤ i ≤ d− 1. That is, from (3)

∑
Z∈Ed,X⊂Z f(Z) = 0 for any X ∈ Ei.

Remark 2.2. Let f ∈ Harmd(n). Since
∑

Z∈Ed
f(Z) = 0, then it is

easy to check from (3) that
∑

X∈Et
f̃(X) = 0, where 1 ≤ d ≤ t ≤ n.

2.2. Linear codes. Let Fq be a finite field of order q, where q is a
prime power. Then V := Fnq denotes the vector space of dimension n
with ordinary inner product:

u · v := u1v1 + · · ·+ unvn

for u,v ∈ V , where u = (u1, . . . , un) and v = (v1, . . . , vn). Let
supp(u) := {i ∈ E | ui 6= 0} and wt(u) := | supp(u)| for u ∈ V .
Let Vd := {u ∈ V | wt(u) = d}. An element f ∈ REd can be extended

to an element f́ ∈ RV by setting, for all u ∈ V ,

(4) f́(u) :=
∑
v∈Vd,

supp(v)⊂supp(u)

f(v).

An Fq–linear code of length n is a linear subspace of V . An Fq–linear
code of length n with dimension k, is called an [n, k] linear code. Let C
be an Fq–linear code. We denote by C⊥ the dual code of C and defined
as:

C⊥ := {u ∈ V | u · v = 0 for all v ∈ C}.

The weight distribution of C is the sequence {Ai | i = 0, 1, . . . , n},
where Ai is the number of codewords of weight i. The polynomial

WC(x, y) :=
∑
u∈C

xn−wt(u)ywt(u) =
n∑
i=0

Aix
n−iyi
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is called the weight enumerator of C and satisfies the MacWilliams
identity:

WC⊥(x, y) =
1

|C|
WC(x+ (q − 1)y, x− y).

Bachoc [2] introduced the concept of harmonic weight enumerator
for a binary code which was later defined for an Fq–linear code by
Tanabe [26] as follows.

Definition 2.1. Let C be an Fq–linear code of length n. Let f ∈
Harmd(n). The harmonic weight enumerator associated with C and f
is

WC,f (x, y) :=
∑
u∈C

f́(u)xn−wt(u)ywt(u).

Theorem 2.1 ([26], MacWilliams type identity). Let WC,f (x, y) be
the harmonic weight enumerator of an Fq–linear code C associated to
f ∈ Harmd(n). Then

WC,f (x, y) = (xy)dZC,f (x, y),

where ZC,f is a homogeneous polynomial of degree n− 2d, and satisfies

ZC⊥,f (x, y) = (−1)d
qn/2

|C|
ZC,f

(
x+ (q − 1)y
√
q

,
x− y
√
q

)
.

Let C be an Fq–linear code of length n and let f ∈ Harmd(n).
Then the weight distribution of C associated to f is defined as Ai,f :=∑

u∈C,wt(u)=i f́(u). Therefore the harmonic weight enumerator of C
associated with f can be rewrite as

WC,f (x, y) =
n∑
i=0

Ai,fx
n−iyi.

Now from the above definition we have by Theorem 2.1,

ZC,f (x, y) =
n∑
i=0

Ai,fx
n−i−dyi−d.

Remark 2.3. If deg f = 0, we have Ai,f = Ai, that is, WC,f (x, y)
becomes the usual weight enumerator WC(x, y).

2.3. Matroids. The matroids can be defined in several equivalent ways.
We prefer the definition which is in terms of independent sets. A (fi-
nite) matroid M is an ordered pair (E, I) consisting of set E and I is
the collection of subsets of E satisfying the following conditions:

(M1) ∅ ∈ I,
(M2) if I ∈ I and J ⊂ I, then J ∈ I, and
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(M3) if I, J ∈ I with |I| < |J |, then there exists j ∈ J \ I such that
I ∪ {j} ∈ I.

The elements of I are called the independent sets of M , and E is
called the ground set of M . A subset of the ground set E that does
not belongs to I is called dependent. An independent set I is called a
basis if it becomes dependent on adding any element of E \ I.

It follows from axiom (M3) that the cardinalities of all bases in a
matroid M are equal; this cardinality is called the rank of M . The
rank ρ(J) of an arbitrary subset J of E is the size of the largest inde-
pendent subset of J . That is, ρ(J) := max{|I| : I ∈ I and I ⊂ J}. In
particular, ρ(∅) = 0. We call ρ(E) the rank of M . We refer the readers
to [24] for detailed discussion.

Definition 2.2. Let M be a matroid on the set E having a rank
function ρ. The Tutte polynomial of M is defined as follows:

T (M ;x, y) :=
∑
J⊂E

(x− 1)ρ(E)−ρ(J)(y − 1)|J |−ρ(J).

Definition 2.3. Let A be a k × n matrix over a finite field Fq. This
gives a matroid M on the set E in which a set I is independent if
and only if the family of columns of A whose indices belong to I is
linearly independent. Such a matroid is called a vector matroid. In the
subsequent sections of this note, by matroids we mean vector matroids.

For an Fq–linear code C, MC denotes the vector matroid that corre-
sponds to C. We next recall this construction, which is treated in [15].
Let G be a k × n matrix with rank k over the finite field Fq. The
set E is indexing the columns of G. Let IG be the collection of all
subsets J of E such that the submatrix GJ consisting of the columns
of G at the positions of J are independent. Then MG := (E, IG) is a
matroid. If G1 and G2 are generator matrices of an Fq–linear code C,
then (E, IG1) = (E, IG2). Therefore, the matroid MC := (E, IC) of an
Fq-linear code C is well defined by (E, IG) for some generator matrix G
of C.

3. Harmonic generalizations of polynomials

3.1. Harmonic Tutte Polynomials. In this section, we define the
Tutte polynomials of a (finite) matroid M associated with a harmonic
function. We also present a very useful relation between the Tutte
polynomial of a matroid and its dual associated to a harmonic function.

Definition 3.1. Let M = (E, I) be a matroid with rank function ρ,
and f ∈ Homd(n) be a real-valued function of degree d. Then the
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weighted Tutte polynomial of M associated to f is defined as follows:

T (M, f ;x, y) :=
∑
J⊂E

f̃(J)(x− 1)ρ(E)−ρ(J)(y − 1)|J |−ρ(J).

In particular, if f ∈ Harmd(n), then we call the weighted Tutte poly-
nomial T (M, f ;x, y) the harmonic Tutte polynomial associated with f .

We define

I⊥ := {I ∈ 2E | I ⊂ E \ A for some A ∈ B(M)},

where B(M) be the collection of all bases of M . Then M⊥ := (E, I⊥)
is called the dual matroid of M . It is well known that if ρ is the
rank function of a matroid M = (E, I), then the rank function of
M⊥ = (E, I⊥) is given as follows: for any J ⊂ E,

ρ⊥(J) := |J |+ ρ(E \ J)− ρ(E)

(see[24]). In particular, ρ⊥(E) + ρ(E) = |E|. The correspondence be-
tween the harmonic Tutte polynomial of a matroid M and its dual M⊥

associated to a harmonic function is given as follows:

Theorem 3.1. Let M = (E, I) be a matroid with a rank function ρ,
and f ∈ Harmd(n). Then T (M⊥, f ;x, y) = (−1)dT (M, f ; y, x).

Before giving a proof of the above theorem, we need to know about
the following technical lemma on harmonic functions from [2].

Lemma 3.1 ([2]). Let f ∈ Harmd(n) and J ⊂ E. Let

f (i)(J) :=
∑
Z∈Ed,
|J∩Z|=i

f(Z).

Then for all 0 ≤ i ≤ d, f (i)(J) = (−1)d−i
(
d
i

)
f̃(J).

Remark 3.1. From the definition of f̃ for f ∈ Harmd(n), we have

f̃(J) = 0 for any J ∈ 2E such that |J | < d. Let I, J ∈ 2E such that
I = E \ J . Then

f̃(J) =
∑
Z∈Ed,
Z⊂J

f(Z) =
∑
Z∈Ed,
|Z∩I|=0

f(Z) = f (0)(I) = (−1)df̃(E \ J).

We have from the above equality that if |J | > n− d, then f̃(J) = 0.

Proof of Theorem 3.1. Let M be a matroid on E with rank function
ρ. Then M⊥ is the dual matroid of M with rank function ρ⊥(J) =
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|J |+ ρ(E \ J)− ρ(E) for any J ⊂ E. Therefore,

T (M⊥, f ;x, y) =
∑
J⊂E

f̃(J)(x− 1)ρ
⊥(E)−ρ⊥(J)(y − 1)|J |−ρ

⊥(J)

=
∑
J⊂E

f̃(J)(x− 1)ρ
⊥(E)−|J |−ρ(E\J)+ρ(E)(y − 1)|J |−|J |−ρ(E\J)+ρ(E)

=
∑
J⊂E

f̃(J)(x− 1)|E\J |−ρ(E\J)(y − 1)ρ(E)−ρ(E\J)

= (−1)d
∑
J⊂E

f̃(E \ J)(y − 1)ρ(E)−ρ(E\J)(x− 1)|E\J |−ρ(E\J)

= (−1)dT (M, f ; y, x).

This completes the proof. �

3.2. Harmonic Weight Enumerator. In this section, we introduce
a new approach to define the harmonic weight enumerators of an Fq–
linear code. This formulation is inspired from Jurrius and Pellikaan [15].

Definition 3.2. Let E be a finite set of cardinality n. Again let C be
an Fq–linear code of length n. Then for an arbitrary subset J ⊂ E, we
define

C(J) := {c ∈ C | cj = 0 for all j ∈ J}
`(J) := dimC(J)

BJ := q`(J) − 1.

Lemma 3.2 ([15]). Let C be an [n, k] linear code with generator ma-
trix G. Assume that the columns of G is indexed by the set E. Let GJ

be the k × t submatrix of G consisting of the columns of G indexed by
J ∈ Et, and let ρ(J) be the rank of GJ . Then `(J) = k − ρ(J).

Now we have the following proposition.

Proposition 3.1. Let f ∈ Harmd(n) and J ⊂ E. Define

Bt,f :=
∑
J∈Et

f̃(J)BJ .

Then we have the following relation between Bt,f and Ai,f as follows:

Bt,f = (−1)d
n−t∑
i=d

(
n− d− i
t− d

)
Ai,f ,

if d ≤ t ≤ n− d; otherwise Bt,f = 0.
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Proof. It is immediate from Remark 3.1 that Bt,f = 0 for 0 ≤ t < d
and n − d < t ≤ n. We now focus on t with d ≤ t ≤ n − d. From the
construction of Bt,f and Remark 3.1, it is clear that

Bt,f = (−1)d
(
t

d

)−1 ∑
J∈Et,X∈Ed,

X⊂J

f̃(E \ J)BJ .

Therefore, it is sufficient to show that for d ≤ t ≤ n− d,(
t

d

)−1 ∑
J∈Et,X∈Ed,

X⊂J

f̃(E \ J)BJ =
n−t∑
i=d

(
n− d− i
t− d

)
Ai,f .

Now following the definition of BJ , we can easily observe that∑
J∈Et,X∈Ed,

X⊂J

f̃(E \ J)BJ =
∑

J∈Et,X∈Ed,
X⊂J

∑
c∈C,

supp(c)∩J=∅,
c 6=0

f̃(E \ J)

=
∑
c∈C,
c 6=0

∑
J∈Et,X∈Ed,
supp(c)∩J=∅,

X⊂J

f̃(E \ J).

Note that from the definition of harmonic function and Remark 2.1 we
have

∑
J∈Et,X∈Ed,
supp(c)∩J=∅,

X⊂J

f̃(E \ J) = 0 for c ∈ C with wt(c) < d. Therefore,

∑
J∈Et,X∈Ed,

X⊂J

f̃(E \ J)BJ =
n−t∑
i=d

∑
c∈C,

wt(c)=i

∑
J∈Et,X∈Ed,
supp(c)∩J=∅,

X⊂J

f̃(E \ J).

After expanding the right hand side of the expression above for each
c ∈ C with wt(c) = i for d ≤ i ≤ n− t, Remark 2.1 together with (2)
implies that∑

J∈Et,X∈Ed,
X⊂J

f̃(E \ J)BJ =
n−t∑
i=d

∑
c∈C,

wt(c)=i

(
t

d

)
NX(J)f́(supp(c)),

where NX(J) denotes the number of J ∈ Et disjoint from supp(c) and
containing X ∈ Ed. Therefore∑

J∈Et,X∈Ed,
X⊂J

f̃(E \ J)BJ =
n−t∑
i=d

∑
c∈C,

wt(c)=i

(
t

d

)(
n− d− i
t− d

)
f́(supp(c)).

This completes the proof. �
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Now we have the following result.

Theorem 3.2. Let C be an Fq–linear code of length n, and f ∈
Harmd(n). Then

ZC,f (x, y) = (−1)d
n−d∑
t=d

Bt,f (x− y)t−dyn−t−d.

Proof. By using Proposition 3.1 and using the binomial expansion of
xn−i = ((x− y) + y)n−i we have

(−1)d
n−d∑
t=d

Bt,f (x− y)t−dyn−t−d

=
n−d∑
t=d

n−t∑
i=d

(
n− d− i
t− d

)
Ai,f (x− y)t−dyn−t−d

=
n−d∑
i=d

Ai,f

(
n−i∑
t=d

(
n− d− i
t− d

)
(x− y)t−dy(n−d−i)−(t−d)

)
yi−d

=
n−d∑
i=d

Ai,fx
n−d−iyi−d

=
n∑
i=0

Ai,fx
n−i−dyi−d

=ZC,f (x, y),

since Ai,f = 0 for i < d and i > n− d. �

3.3. Examples. We assume that E = {1, 2, 3}. Let

Harm1(3) 3 f = a{1}+ b{2} − (a+ b){3}

be a (discrete) harmonic function of degree 1, where f({1}) = a,
f({2}) = b and f({3}) = −(a+ b). Then

f̃(∅) = 0, f̃({1}) = a, f̃({2}) = b, f̃({3}) = −(a+ b)

f̃({1, 2}) = a+ b, f̃({1, 3}) = −b, f̃({2, 3}) = −a, f̃({1, 2, 3}) = 0.

Let C be a [3, 2] code over F2 with generator matrix as follows:

G =

[
1 1 0
0 0 1

]
.
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The columns of the matrix G is indexed by E. Then the matroid
corresponding to C is MC = (E, I), where

I = {∅, {1}, {2}, {3}, {1, 3}, {2, 3}}.

Here ρ(E) = 2. It is easy to find the ranks of all the subsets of E.
By direct calculation, we have

T (MC , f ;x, y) =
∑
J⊂E

f̃(J)(x− 1)ρ(E)−ρ(J)(y − 1)|J |−ρ(J)

= (a+ b)(x− 1)(y − 1)− (a+ b).

The elements of C are listed as follows:

(0, 0, 0), (0, 0, 1), (1, 1, 0), (1, 1, 1).

The harmonic weight enumerator of C associated to f is

WC,f = −(a+ b)x2y + (a+ b)xy2 = (xy)1ZC,f ,

where ZC,f = (a+ b)(y − x).

4. Generalized Greene’s Identity

Let MC be a matroid associated to an Fq–linear code C of length n.
It is immediate from [10, 13, 15] that M⊥

C = MC⊥ . Now we have the
following proposition.

Proposition 4.1. Let C be an [n, k] code and MC be its matroid. Let
f be a harmonic function of degree d. Then

T (MC , f ;x, y) =
n−d∑
t=d

∑
J∈Et

f̃(J)(x− 1)`(J)(y − 1)`(J)−(k−t).

Proof. The proposition follows from `(J) = k− ρ(J) for any J ∈ Et by
Lemma 3.2, and ρ(E) = k. �

Now we have the following harmonic generalization of the Greene’s
identity.

Theorem 4.1. Let C be an [n, k] code and f be a harmonic function
with degree d. Then

ZC,f (x, y) = (−1)d(x− y)k−dyn−k−dT

(
MC , f ;

x+ (q − 1)y

x− y
,
x

y

)
.
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Proof. By using the Proposition 4.1 and Remark 2.2, we can write

T

(
MC , f ;

x+ (q − 1)y

x− y
,
x

y

)
=

n−d∑
t=d

∑
J∈Et

f̃(J)

(
qy

x− y

)`(J)(
x− y
y

)`(J)−(k−t)

=
n−d∑
t=d

∑
J∈Et

f̃(J)q`(J)
(

y

x− y

)`(J)(
x− y
y

)`(J)−(k−t)

=
n−d∑
t=d

∑
J∈Et

f̃(J)((q`(J) − 1) + 1)(x− y)−(k−t)yk−t

=
n−d∑
t=d

∑
J∈Et

f̃(J)(BJ + 1)(x− y)−(k−t)yk−t

=
n−d∑
t=d

(∑
J∈Et

f̃(J)BJ +
∑
J∈Et

f̃(J)

)
(x− y)−(k−t)yk−t

=
n−d∑
t=d

(Bt,f + 0) (x− y)−(k−t)yk−t

=
n−d∑
t=d

Bt,f (x− y)−(k−t)yk−t.

Therefore, from Theorem 3.2 we have

(−1)d(x− y)k−dyn−k−dT

(
MC , f ;

x+ (q − 1)y

x− y
,
x

y

)
=(−1)d

n−d∑
t=d

Bt,f (x− y)t−dyn−t−d

=ZC,f (x, y).

This completes the proof. �

Now we give an alternative proof of the Fq–analogue of Bachoc’s
MacWilliams type identity (see [2]) stated in Theorem 2.1 as an appli-
cation of Theorem 4.1.
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Proof of Theorem 2.1. Let C be an [n, k] code, and MC be its matroid.
Then

(−1)d
qn/2

|C|
ZC,f

(
x+ (q − 1)y
√
q

,
x− y
√
q

)
= (−1)2d

qn/2

qk

(
qy
√
q

)k−d(
x− y
√
q

)n−k−d
T

(
MC , f ;

x

y
,
x+ (q − 1)y

x− y

)
= (x− y)n−k−dyk−dT

(
MC , f ;

x

y
,
x+ (q − 1)y

x− y

)
= (−1)d(x− y)(n−k)−dyn−(n−k)−dT

(
MC⊥ , f ;

x+ (q − 1)y

x− y
,
x

y

)
= (−1)d(x− y)dimC⊥−dyn−dimC⊥−dT

(
MC⊥ , f ;

x+ (q − 1)y

x− y
,
x

y

)
= ZC⊥,f (x, y).

Hence Theorem is proved. �

5. Concluding Remarks

We close this paper with the following design theoretical remark that
gives an application of the harmonic function connecting the t-designs
with matroids.

Remark 5.1. Let n, k, t and λ be non-negative integers such that n ≥
k ≥ t and λ ≥ 1. A t-(n, k, λ) design (in short, t-design) is a pair
D := (E,B), where E is a finite set of point of cardinality n, and B is
a collection of k-element subsets of E called blocks, with the property
that any t points are contained in precisely λ blocks. Some properties
of combinatorial t-designs obtained from codes were discussed in [1, 2,
4, 8, 9, 16, 20, 21, 22, 25] and their analogies in the theory of lattices
and vertex operator algebras were discussed in [4, 5, 6, 7, 18, 19, 20].

The harmonic functions have many applications; particularly, the
relations between design theory and coding theory were stated in Ba-
choc [2]: the set of words with fixed weight in a binary code C forms a
t-design if and only if WC,f (x, y) = 0 for all f ∈ Harmd(n), 1 ≤ d ≤ t.
Then it is trivial that if T (MC , f ;x, y) = 0 for all f ∈ Harmd(n),
1 ≤ d ≤ t, then the set of words with fixed weight in an Fq-linear code
C forms a t-design.

We will more precisely discuss about a relation between matroids and
combinatorial designs with respect to “harmonic Tutte polynomials” in
the forthcoming paper.
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