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Abstract. In this paper, we introduce the notion of Jacobi poly-
nomials of a code with multiple reference vectors, and give the
MacWilliams type identity for it. Moreover, we derive a formula
to obtain the Jacobi polynomials using the Aronhold polarization
operator. Finally, we describe some facts obtained from Type III
and Type IV codes that interpret the relation between the Jacobi
polynomials and designs.
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1. Introduction

A. Bonnecaze et al. [4] took the notion of Jacobi polynomials, a cel-
ebrated generalization of weight enumerators [20, 22] that were intro-
duced by M. Ozeki [26] for codes as an analogue to Jacobi forms [2, 16]
as a powerful generalization of modular form [15, 27] of Lattices [8].
They gave a formula to compute the Jacobi polynomials of a binary
code as an application of combinatorial t-designs using an operator,
known as Aronhold polarization operator. Many authors studied the
combinatorial t-designs and discussed their properties in [1, 14, 23, 24]
that were derived from codes and their analogies. Moreover, P.J. Cameron [7]
gave the notion of generalized t-designs and discussed its properties.
Furthermore, A. Bonnecaze et al. [4] constructed various types of de-
signs such as group divisible designs, packing designs and covering de-
signs. To establish the relationship between these designs and the
Jacobi polynomials, they studied Jacobi polynomials for Type II codes
through invariant theory [17, 25].

In this paper, we give the generalizations and analogues of some
results in [4]. We define the Jacobi polynomials with multiple reference
vectors for codes, and give the MacWilliams type identity for it. As an
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analogue of the combinatorial interpretation of the polarization that
was given in [4], is given here for codes that holds generalized t-designs
for every given weight of the codewords. In addition, we study some
Type III (resp. Type IV) codes of specific lengths, and determine
the polynomials that generate the space of Jacobi polynomials for a
Type III (resp. Type IV) code with respect to reference vectors of a
particular length. Moreover, we observe from the examples that the
number of blocks of a packing (resp. covering) design correspond to
the coefficients in Jacobi polynomials.

This paper is organized as follows. In Section 2, we discuss the ba-
sic definitions and properties of codes that needed to understand this
paper. In Section 3, we give the MacWilliams type identity (Theo-
rem 3.1) for the Jacobi polynomials of a code with multiple reference
vectors. In Section 4, we see how polarization operator acts to obtain
the Jacobi polynomials with multiple reference vectors (Theorem 4.2,
Theorem 4.3). In Section 5, we disclose some facts between a Type III
(resp. Type IV) code of specific length and designs of various kinds
with the help of the Jacobi polynomials. Finally, we conclude the paper
with some remarks in Section 6.

All computer calculations in this paper were done with the help of
Magma [6].

2. Preliminaries

Let Fq be a finite field of order q, where q is a prime power. Then Fn
q

denotes the vector space of dimension n over Fq. The elements of Fn
q

are known as vectors. The Hamming weight of u = (u1, . . . , un) ∈ Fn
q is

denoted by wt(u) and defined to be the number of i’s such that ui ̸= 0.
Let u = (u1, . . . , un) and v = (v1, . . . , vn) be the vectors of Fn

q . Then
the inner product of two vectors u,v ∈ Fn

q is given by

u · v := u1v1 + · · ·+ unvn.

If q is an even power of an arbitrary prime p, then it is convenient to
consider another inner product given by

u · v := u1v1 + · · ·+ unvn,

where vi := vi
√
q. An Fq-linear code of length n is a vector subspace of

Fn
q . The elements of an Fq-linear code are called codewords. The dual

code of an Fq-linear code C of length n is defined by

C⊥ := {v ∈ Fn
q | u · v = 0 for all u ∈ C}.

An Fq-linear code C is called self-dual if C = C⊥. It is well known that
the length n of a self-dual code over Fq is even and the dimension is n/2.
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To study self-dual codes in detail, we refer the readers to [3, 17, 21, 25].
A self-dual code C over F2 or F4 of length n ≡ 0 (mod 2) having even
weight is called Type I and Type IV, respectively. A self-dual code C
over F2 of length n ≡ 0 (mod 8) is called Type II if the weight of each
codeword of C is multiple of 4. Finally, a self-dual code C over F3 of
length n ≡ 0 (mod 4) is called Type III if the weight of each codeword
of C is multiple of 3.

Definition 2.1. Let C be an Fq-linear code of length n. We denote
by AC

i the number of codewords in C having Hamming weight i. Then
the weight enumerator of C is defined as

WC(x, y) :=
∑
u∈C

xn−wt(u)ywt(u) =
n∑

i=0

AC
i x

n−iyi.

Definition 2.2. Let C be an Fq-linear code of length n. Then the
Jacobi polynomial attached to a set T of coordinate places of the code
C is defined as follows:

JC,T (w, z, x, y) :=
∑
u∈C

wm0(u)zm1(u)xn0(u)yn1(u),

where T ⊆ [n], and mi(u) is the Hamming composition of u on T and
ni(u) is the Hamming composition of u on [n]\T .

3. MacWilliams type identity

The MacWilliams type identity for the Jacobi polynomial of an Fq–
linear code with one reference vector was given in [26]. In this section,
we give the MacWilliams type identity for the Jacobi polynomial of an
Fq–linear code with multiple reference vectors.

Definition 3.1. Let C be an Fq–linear code of length n. Then the
Jacobi polynomial of C with respect to ℓ reference vectors w1, . . . ,wℓ ∈
Fn
q is denoted by JC,w1,...,wℓ

({xa}a∈Fℓ+1
2

) and defined as

JC,w1,...,wℓ
({xa}a∈Fℓ+1

2
) :=

∑
u∈C

∏
a∈Fℓ+1

2

xNa(u,w1,...,wℓ)
a .

Here we denote by Na(u1, . . . ,ug) the number of i such that a =
(ϕ(u1i), . . . , ϕ(ugi)) ∈ Fg

2, where ϕ(uji) = 1 if uji ̸= 0, otherwise
ϕ(uji) = 0.

Note that if ℓ = 1, the above definition is completely equivalent to
the Jacobi polynomial with one reference vector (Definition 2.2).

Let Fq be a finite field, where q = pf for some prime number p. A
character of Fq is a homomorphism from the additive group Fq to the
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multiplicative group of non-zero complex numbers. We review [10, 22]
to introduce some fixed non-trivial characters over Fq. Now let F (x)
be a primitive irreducible polynomial of degree f over Fp and let λ be
a root of F (x). Then any element a ∈ Fq has a unique representation
as:

a = a0 + a1λ+ a2λ
2 + · · ·+ af−1λ

f−1,

where ai ∈ Fp. For b ∈ Fq, we define χb(a) := ζ
a0b0+···+af−1bf−1
p , where

ζp is the p-th primitive root e2πi/p of unity. When b ̸= 0, then χb is
a non-trivial character of Fq. Let χ be a non-trivial character of Fq.
Then for any a ∈ Fq, we have the following property:

∑
b∈Fq

χ(ab) :=

{
q if a = 0,

0 if a ̸= 0.

Lemma 3.1 ([22]). Let C be an Fq-linear code of length n. For v ∈ Fn
q ,

define

δC⊥(v) :=

{
1 if v ∈ C⊥,

0 otherwise.

Then we have the following identity:

δC⊥(v) =
1

|C|
∑
u∈C

χ(u · v).

Now we give the MacWilliams type identity for the Jacobi polyno-
mial of an Fq–linear code with respect to multiple reference vectors.

Theorem 3.1 (MacWilliams Identity). Let C be an Fq–linear code of
length n. Again let χ be a non-trivial character of Fq. Let JC,w1,...,wℓ

({xa}a∈Fℓ+1
2

)

be the Jacobi polynomial of C with respect to the reference vectors
w1, . . . ,wℓ ∈ Fn

q . Then

JC⊥,w1,...,wℓ
({xa}a∈Fℓ+1

2
)

=
1

|C|
JC,w1,...,wℓ


∑

b∈Fq

χ(a1b)x(ϕ(b),ϕ(a2),...,ϕ(aℓ+1))


a∈Fℓ+1

q

 .

Proof. By Lemma 3.1, we can write



JACOBI POLYNOMIALS AND DESIGN THEORY I 5

JC⊥,w1,...,wℓ
({xa}a∈Fℓ+1

2
)

=
∑
u∈C⊥

∏
a∈Fℓ+1

2

xNa(u,w1,...,wℓ)
a

=
∑
v∈Fn

q

δC⊥(v)
∏

a∈Fℓ+1
2

xNa(v,w1,...,wℓ)
a

=
1

|C|
∑
u∈C
v∈Fn

q

χ(u · v)
∏

a∈Fℓ+1
2

xNa(v,w1,...,wℓ)
a

=
1

|C|
∑
u∈C
v∈Fn

q

χ(u1v1 + · · ·+ unvn)
∏

1≤i≤n

x(ϕ(vi),ϕ(w1i),...,ϕ(wℓi))

=
1

|C|
∑
u∈C

∏
1≤i≤n

∑
vi∈Fq

χ(uivi)x(ϕ(vi),ϕ(w1i),...,ϕ(wℓi))


=

1

|C|
∑
u∈C

∏
a∈Fℓ+1

q

∑
b∈Fq

χ(a1b)x(ϕ(b),ϕ(a2),...,ϕ(aℓ+1))

Na(u,w1,...,wℓ)

=
1

|C|
JC,w1,...,wℓ


∑

b∈Fq

χ(a1b)x(ϕ(b),ϕ(a2),...,ϕ(aℓ+1))


a∈Fℓ+1

q

 .

Hence the proof is completed. □

4. Generalized t-designs and Jacobi polynomials

Bonnecaze et al. introduced an operator called polarization operator
in [4], and using this operator, they gave a formula to evaluate the
Jacobi polynomial of a binary code from the weight enumerator of
the code. In this section, we give a generalized form of the polarization
operation, and present an application of this operator in the evaluation
of the Jacobi polynomial of a non-binary code associated to the multiple
reference vectors.

First we recall the definition of generalized t-designs from [7] as fol-
lows. Let t, k, λ be the integers such that λ > 0 and k > t > 0. Again
let k := (k1, . . . , kn) such that k =

∑n
i=1 ki, v := (v1, . . . , vn) such

that vi ≥ ki for all i. Let X := (X1, . . . , Xn), where Xi’s are pairwise
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disjoint sets with |Xi| = vi for all i and

B ⊆
(
X1

k1

)
× · · · ×

(
Xn

kn

)
.

Definition 4.1. A t-(v,k, λ) design or a generalized t-design (in short)
is a pair D := (X,B) with the following property: if t := (t1, . . . , tn)
such that t =

∑n
i=1 ti satisfying 0 ≤ ti ≤ ki for all i, then for any

choice T := (T1, . . . , Tn) with Ti ∈
(
Xi

ti

)
for all i, there are precisely λ

members K := (K1, . . . , Kn) ∈ B for which Ti ⊆ Ki for all i.

Note that in the case when k = (k) and v = (v), this is precisely the
definition of a combinatorial t-(v, k, λ) design or a t-design (in short).
We can construct the generalized t-designs from codes as follows.

Let v = (v1, . . . , vℓ) such that
∑ℓ

i=1 vi = n and X = (X1, . . . , Xℓ)
of pairwise disjoint sets Xi ⊆ [n] with |Xi| = vi. Again let u =
(u1, . . . , un) ∈ Fn

q . Then for X ⊆ [n], we define

suppX(u) := {i ∈ X | ui ̸= 0},
K(u) := (suppX1

(u), . . . , suppXℓ
(u)),

wtX(u) := | suppX(u)|.
Again for any positive integer k, let k = (k1, . . . , kℓ) such that∑ℓ
i=1 ki = k. Let C be an Fq–linear code of length n. Then

Ck := {u ∈ C | wtXi
(u) = ki for all i},

B(Ck) := {K(u) | u ∈ Ck}.
In general, B(Ck) is a multi-set. We say Ck is a t-(v,k, λ) design
if (X,B(Ck)) is a t-(v,k, λ) design. We say a code is generalized t-
homogeneous if the codewords of every given weight k hold a t-(v,k, λ)
design.

From the above discussion we have the following result. We omit the
proof of the theorem since it follows from the above definitions.

Theorem 4.1. Let C be an Fq-linear code of length n. Let t, k, λ be
the integers such that λ > 0 and k > t > 0. Let v := (v1, . . . , vℓ) such
that v1 + · · · + vℓ = n. Let X := (X1, . . . , Xℓ) of pairwise disjoint set
X1, . . . , Xℓ ⊆ [n] with |X1| = v1, . . . , |Xℓ| = vℓ. Let k := (k1, . . . , kℓ)
such that k1 + · · · + kℓ = k. Then the set of codewords of C form a
t-(v,k, λ) design for every given weight k with t = (t1, . . . , tℓ) such
t1 + · · · + tℓ = t satisfying 0 ≤ ti ≤ ki for all i if and only if the
Jacobi polynomial JC,w1,...,wℓ

of C associated to the reference vectors
w1, . . . ,wℓ ∈ Fn

q such that wtXi
(wi) = ti = wt(wi) for all i, is invari-

ant.
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The situation described in the above theorem interprets that the Ja-
cobi polynomial JC,w1,...,wℓ

is independent of the choices of the reference
vectors w1, . . . ,wℓ ∈ Fn

q . In this case, we prefer to denote the Jacobi
polynomial as JC,t1,...,tℓ . In particular, when k = (k) and t = (t), it
becomes the Jacobi polynomial JC,t as in [4].

Let C be an Fq-linear code of length n. Then the code C−i obtained
from C by puncturing at coordinate place i. Now from [22] we have
the following lemma.

Lemma 4.1. Let C be a code of length n. Then

WC−i(x, y) =
1

n

(
∂

∂x
+

∂

∂y

)
WC(x, y).

Let P (x0, x1) be a homogeneous polynomial with indeterminates x0

and x1. Again let P ′
x0
(resp. P ′

x1
) denote the partial derivative with

respect to variable x0 (resp. x1). Define the polarization operator Aj

for any integer 1 ≤ j ≤ ℓ as follows:

(4.1) Aj · P (wj, zj, x0, x1) := wjP
′
x0
(x0, x1) + zjP

′
x1
(x0, x1).

Here the indeterminates in the above equation denote xa for some a ∈
Fℓ+1
2 as follows: wj := x(0,0,...,0, 1

(j+1)th
,0,...,0), zj := x(1,0,...,0, 1

(j+1)th
,0,...,0),

x0 := x(0,0,...,0), and x1 := x(1,0,...,0). Now we have a generalization of [4,
Theorem 3] as follows.

Theorem 4.2. Every code C is a generalized 1-homogenous if and
only if for any ℓ-tuple (0, . . . , 0, 1, 0, . . . , 0) having a single non-zero
coordinate, say j-th coordinate with 1, we have

(4.2) JC,0,...,0,1,0,...,0 =
1

n
Aj ·WC .

Proof. Let C be generalized 1-homogeneous. Then by Lemma 4.1 one
can easily find Equation (4.2) is true. Conversely, the hypothesis im-
plies that the Jacobi polynomial JC,0,...,0,1,0,...,0 is uniquely determined.
Therefore, by Theorem 4.1 we can say that the codewords of every
given weight of C form a generalized 1-design. Hence C is generalized
1-homogeneous. □

Theorem 4.3. If C is generalized t-homogeneous and contains no code-
word of weight ≤ t then for t = (t1, . . . , tℓ) such that t1 + · · · + tℓ = t
we have

JC,t1,...,tℓ =
1

n(n− 1) · · · (n− t+ 1)
Atℓ

ℓ · · ·At1
1 ·WC .
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Proof. The statement is true for t = 1 by Theorem 4.2. For d :=
(d1, . . . , dℓ) such that d1 + · · ·+ dℓ = d < t satisfying 0 ≤ di ≤ ti for all
i, let us suppose that

JC,d1,...,dℓ =
1

n(n− 1) · · · (n− d+ 1)
Adℓ

ℓ · · ·Ad1
1 ·WC .

Let dj < tj. Then we have

JC,d1,...,dj−1,(dj+1),dj+1,...,dℓ =
1

n− d
Aj · JC,d1,...,dj−1,dj ,dj+1,...,dℓ

=
1

n− d
Aj

1

n(n− 1) · · · (n− d+ 1)

Adℓ
ℓ · · ·Adj+1

j+1 A
dj
j A

dj−1

j−1 · · ·Ad1
1 ·WC

=
1

n(n− 1) · · · (n− d+ 1)(n− d)

Adℓ
ℓ · · ·Adj+1

j+1 A
dj+1
j A

dj−1

j−1 · · ·Ad1
1 ·WC .

The converse implication follows from the proof of Theorem 4.2. □

5. Designs and Molien series

Bonnecaze et al. [4] studied certain length of Type II codes to focus
some relation between Jacobi polynomials and designs. In this section,
we follow the idea, and establish the connection between Jacobi poly-
nomials and designs for some Type III and Type IV codes. We would
like to mention that in this section, we study Jacobi polynomials with
one reference vector. To overcome all sorts of confusions, we refer the
readers to [4] for notations and symbols.

First, let us recall [4] for the definitions of various types of designs.
A design with parameters t-(v, k, (λa1

1 , . . . , λaN
N )) is a collection of k-

element subsets called blocks of a v-element set (the varieties) and a
partition of the set of all t-tuples into N groups such that every t-set
belonging to the ith group (comprising ai such t-sets) is contained in
exactly λi blocks. Notice that for N = 1 the design coincide with a
t-design. A packing (resp. covering) design with parameters t-(v, k, λ)
is a design with maxi(λi) = λ (resp. mini(λi) = λ). The maximum
(resp. minimum) number of blocks of a packing (resp. covering) design
denoted by Dλ(v, k, t) (resp. Cλ(v, k, t)).

The study of weight polynomials of a code with the help of invariant
theory is a very convenient and powerful technique, as shown in [25, 28].
Let G be a finite subgroup of GL(2,C), and G acts on a polynomial
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ring of two variables, say x, y. Then it is well-known from [28, The-
orem 1] that the classical Molien series gives the linearly independent
homogeneous invariant polynomials of G. Later, R.P. Stanley [29] in-
troduce the notion of bivariate Molien series that computes invari-
ant polynomials of G by their homogeneous degrees in w, z and x, y.
R.P. Stanley [29] defined the bivariate Molien series as follows:

f(u, v) :=
1

|G|
∑
g∈G

1

det (1− ug) det (1− vg)
.

A. Bonnecaze et al. [4] showed that the bivariate Molien series plays an
important role to describe the relation between the Jacobi polynomi-
als of codes and designs such as group divisible designs, packing (resp.
covering) designs. To compute all the invariant polynomials of G ex-
plicitly, it is convenient to classify the invariants by their degrees. We
denote the homogeneous part of degree d of f(u, v) by f [d].

In the following examples, we study two types of codes over Fq;
Type III and Type IV, that hold t-designs with parameters t-(v, k, λ),
and we would like to give an upper (resp. lower) bound of Dλ(v, k, t)
(resp. Cλ(v, k, t)) of a packing (resp. covering) design corresponding
to the parameters. To do so, firstly, we compute the homogeneous part
f [d] of f(u, v) corresponding to a code of length d. The coefficients of
f [d] determine the number of polynomials that are needed to gener-
ate the space of Jacobi polynomials corresponding to the reference sets
with a particular cardinality. The number of those Jacobi polynomials
determines the number of λ’s of t-(n, k, λa1

1 , . . . , λaN
N ). Finally, the coef-

ficient of the term xn−kyk in the weight enumerator of the code obtains
the upper (resp. lower) bound of Dλ(v, k, t) (resp. Cλ(v, k, t)). Note
that a packing (resp. covering) design is a simple design.

5.1. Type III codes. The MacWilliams identity and the modulo 3
congruence condition yield that the weight enumerator of a Type III
code remains invariant under the action of group G3 of order 48 which
is generated by the following two matrices:

1√
3

[
1 2
1 −1

]
and

[
1 0
0 e2πi/3

]
.

For the case of the group G3, we get from the Magma computations
that the denominator of f(u, v) is in the form of d(u)d(v), where

d(u) = (u− 1)2(u+ 1)2(u2 + 1)2(u2 − u+ 1)(u2 + u+ 1)(u4 − u2 + 1).
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Example 5.1 (length 4). Let CIII
4 be a ternary self-dual code of length

4 in [18]. Then

f [4] = u4 + u3v + u2v2 + uv3 + v4.

Since CIII
4 holds 3-design, we assume that |T | = 1, 2, 3. Then

JCIII
4 ,1 =

1

4
AWCIII

4
(x, y)

= w(x3 + 2y3) + 6zxy2,

JCIII
4 ,2 =

1

4 · 3
A2WCIII

4
(x, y)

= w2x2 + 4wzy2 + 4z2xy,

JCIII
4 ,3 =

1

4 · 3 · 2
A3WCIII

4
(x, y)

= w3x+ 6wz2y + 2z3x.

By dividing the coefficient of the term zty3−t (t = 1, 2, 3) in the
Jacobi polynomial by 2, we obtain the values of λ. Since the coefficient
of the term u4−tvt in f [d] is 1, we obtain the group divisible design t-
(4, 3, λ). Then the maximum number of blocks of t-(4, 3, λ) design is 4,
and the minimum number of blocks of t-(4, 3, λ) design is 4. Therefore,
Dλ(4, 3, t) ≤ 4 ≤ Cλ(4, 3, t).

Example 5.2 (length 8). Let CIII
8 be a ternary self-dual code of length

8 in [18]. Then

f [8] = u8 + u7v + 2u6v2 + 2u5v3 + 2u4v4 + 2u3v5 + 2u2v6 + uv7 + v8.

Since CIII
8 holds 1-design, we assume that |T | = 1. Then

JCIII
8 ,1 =

1

8
AWCIII

8
(x, y) = w(x7 +10x4y3 +16xy6) + z(6x5y2 +48x2y5).

The space of Jacobi polynomials JCIII
8 ,T with |T | = 2 may be generated

by the two polynomials

J1
CIII

8 ,2 = w2(x6 + 8x3y3) + wz(4x4y2 + 32xy5) + z2(4x5y + 32x2y4),

J2
CIII

8 ,2 = w2(4x3y3 + 4y6) + wz(12x4y2 + 24xy5) + 36z2x2y4.

Combining these two equations, we obtain 2-designs with parameters

2-(8, 3, (212, 016)),

2-(8, 6, (812, 916)).

Since k = 3ℓ (1 ≤ ℓ ≤ 2), dividing the coefficient of the term ztyk−t

(t = 2, 3) in the Jacobi polynomials by 2ℓ, we obtain the values of λ1, λ2.
Dividing the coefficient of the term x8−kyk in the weight enumerator of
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the code by 2ℓ we obtain an upper (resp. lower) bound of Dλ(8, k, t)
(resp. Cλ(8, k, t)).

D2(8, 3, 2) ≤ 8 ≤ C0(8, 3, 2),

D9(8, 6, 2) ≤ 16 ≤ C8(8, 6, 2).

The space of Jacobi polynomials JCIII
8 ,T with |T | = 3 may be generated

by the two polynomials

J1
CIII

8 ,3 = w3(x5 + 8x2y3) + wz2(6x4y + 48xy4) + z3(2x5 + 16x2y3),

J2
CIII

8 ,3 = w3(x5 + 2x2y3) + w2z(10x3y2 + 8y5)

+ wz2(4x4y + 32xy4) + 24z3x2y3,

which gives packing and covering designs

D1(8, 3, 3) ≤ 8 ≤ C0(8, 3, 3),

D6(8, 6, 3) ≤ 16 ≤ C4(8, 6, 3).

Example 5.3 (length 12). Let CIII
12 be the first ternary self-dual code

of length 12 in [18].

f [12] = 2u12 + 2u11v + 3u10v2 + 4u9v3 + 4u8v4 + 4u7v5 + 5u6v6 + · · · .
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Since CIII
12 holds 5-design, we observe that

JCIII
12 ,1 =

1

12
AWCIII

12
(x, y)

= w(x11 + 132x5y6 + 110x2y9) + z(132x6y5 + 330x3y8 + 24y11),

JCIII
12 ,2 =

1

12 · 11
A2WCIII

12
(x, y)

= w2(x10 + 60x4y6 + 20xy9) + 2wz(72x5y5 + 90x2y8)

+ z2(60x6y4 + 240x3y7 + 24y10),

JCIII
12 ,3 =

1

12 · 11 · 10
A3WCIII

12
(x, y)

= w3(x9 + 24x3y6 + 2y9) + w2z(108x4y5 + 54xy8)

+ wz2(108x5y4 + 216x2y7)

+ z3(24x6y3 + 168x3y6 + 24y9),

JCIII
12 ,4 =

1

12 · 11 · 10 · 9
A4WCIII

12
(x, y)

= w4(x8 + 8x2y6) + w3z(64x3y5 + 8y8) + w2z2(120x4y4 + 96xy7)

+ wz3(64x5y3 + 224x2y6) + z4(8x6y2 + 112x3y5 + 24y8),

JCIII
12 ,5 =

1

12 · 11 · 10 · 9 · 8
A5wCIII

12
(x, y)

= w5(x7 + 2xy6) + 30w4zx2y5 + w3z2(100x3y4 + 20y7)

+ wz4(30x5y2 + 210x2y5) + w2z3(100x4y3 + 140xy6)

+ z5(2x6y + 70x3y4 + 24y7).

The space of Jacobi polynomials JCIII
12 ,T with |T | = 6 is generated by

the two polynomials

J1
CIII

12 ,6 = w6(x6 + 2y6) + 90w4z2x2y4 + w3z3(80x3y3 + 40y6)

+ w2z4(90x4y2 + 180xy5) + 180wz5x2y4

+ z6(2x6 + 40x3y3 + 24y6),

J2
CIII

12 ,6 = w6x6 + 12w5zxy5 + 60w4z2x2y4 + w3z3(120x3y3 + 40y6)

+ w2z4(60x4y2 + 180xy5) + wz5(12x5y + 180x2y4)

+ z6(40x3y3 + 24y6),

which gives packing and covering designs

D1(12, 6, 6) ≤ 132 ≤ C0(12, 6, 6).
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Example 5.4 (length 16). Let CIII
16 be the seventh ternary self-dual

code of length 16 in [18].

f [16] = 2u16 + 3u15v + 4u14v2 + 5u13v3 + 6u12v4 + 6u11v5 + 7u10v6

+ 7u9v7 + 7u8v8 + · · · .

Observe that

JCIII
16 ,1 =

1

16
AWCIII

16
(x, y)

= w(x15 + 140x9y6 + 1190x6y9 + 840x3y12 + 16y15)

+ z(84x10y5 + 1530x7y8 + 2520x4y11 + 240xy14),

JCIII
16 ,2 =

1

16 · 15
A2WCIII

16
(x, y)

= w2(x14 + 84x8y6 + 476x5y9 + 168x2y12)

+ wz(112x9y5 + 1428x6y8 + 1344x3y11 + 32y14)

+ z2(28x10y4 + 816x7y7 + 1848x4y10 + 224xy13),

JCIII
16 ,3 =

1

16 · 15 · 14
A3WCIII

16
(x, y)

= w3(x13 + 48x7y6 + 170x4y9 + 24xy12)

+ w2z(108x8y5 + 918x5y8 + 432x2y11)

+ wz2(60x9y4 + 1224x6y7 + 1584x3y10 + 48y13)

+ z3(8x10y3 + 408x7y6 + 1320x4y9 + 208xy12).
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The space of Jacobi polynomials JCIII
16 ,T with |T | = 4 may be generated

by the four polynomials

J1
CIII

16 ,4 = w4(x12 + 32x6y6 + 40x3y9 + 8y12)

+ w3z(64x7y5 + 520x4y8 + 64xy11)

+ w2z2(120x8y4 + 1056x5y7 + 768x2y10)

+ wz3(928x6y6 + 1600x3y9 + 64y12)

+ z4(8x10y2 + 176x7y5 + 920x4y8 + 192xy11),

J2
CIII

16 ,4 = w4(x12 + 24x6y6 + 56x3y9)

+ w3z(96x7y5 + 456x4y8 + 96xy11)

+ w2z2(72x8y4 + 1152x5y7 + 720x2y10)

+ wz3(32x9y3 + 864x6y6 + 1632x3y9 + 64y12)

+ z4(192x7y5 + 912x4y8 + 192xy11),

J3
CIII

16 ,4 = w4(x12 + 26x6y6 + 52x3y9 + 2y12)

+ w3z(88x7y5 + 472x4y8 + 88xy11)

+ w2z2(84x8y4 + 1128x5y7 + 732x2y10)

+ wz3(24x9y3 + 880x6y6 + 1624x3y9 + 64y12)

+ z4(2x10y2 + 188x7y5 + 914x4y8 + 192xy11),

J4
CIII

16 ,4 = w4(x12 + 28x6y6 + 48x3y9 + 4y12)

+ w3z(80x7y5 + 488x4y8 + 80xy11)

+ w2z2(72x8y4 + 1104x5y7 + 744x2y10)

+ wz3(16x9y3 + 896x6y6 + 1616x3y9 + 64y12)

+ z4(4x10y2 + 184x7y5 + 916x4y8 + 192xy11),

which gives packing and covering designs

D4(16, 6, 4) ≤ 112 ≤ C0(16, 6, 4),

D96(16, 9, 4) ≤ 1360 ≤ C88(16, 9, 4),

D343(16, 12, 4) ≤ 1260 ≤ C342(16, 12, 4).

Example 5.5 (length 20). Let CIII
20 be the 19th ternary self-dual code

of length 20 in [18].

f [20] = 2u20 + 3u19v + 5u18v2 + 6u17v3 + 7u16v4 + 8u15v5 + 9u14v6

+ 9u13v7 + 10u12v8 + 10u11v9 + 10u10v10 + · · · .
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Observe that

JCIII
20 ,1 =

1

20
AWCIII

20
(x, y)

= w(x19 + 84x13y6 + 2398x10y9 + 10512x7y12 + 6432x4y15 + 256xy18)

+ z(36x14y5 + 1962x11y8 + 15768x8y11 + 19296x5y14 + 2304x2y17).

The space of Jacobi polynomials JCIII
20 ,T with |T | = 2 may be generated

by the two polynomials

J1
CIII

20 ,2 = w2(x18 + 48x12y6 + 1300x9y9 + 3816x6y12 + 1392x3y15 + 4y18)

+ wz(72x13y5 + 2196x10y8 + 13392x7y11 + 10080x4y14 + 504xy17)

+ z2(864x11y7 + 9072x8y10 + 14256x5y13 + 2052x2y16),

J2
CIII

20 ,2 = w2(x18 + 68x12y6 + 1220x9y9 + 3936x6y12 + 1312x3y15 + 24y18)

+ wz(32x13y5 + 2356x10y8 + 13152x7y11 + 10240x4y14 + 464xy17)

+ z2(20x14y4 + 784x11y7 + 9192x8y10 + 14176x5y13 + 2072x2y16),

which gives packing and covering designs

D10(20, 6, 2) ≤ 60 ≤ C0(20, 6, 2),

D432(20, 9, 2) ≤ 2180 ≤ C392(20, 9, 2),

D4296(20, 12, 2) ≤ 12240 ≤ C4212(20, 12, 2),

D6444(20, 15, 2) ≤ 11544 ≤ C6308(20, 15, 2).

5.2. Type IV codes. It is well-known (see [25]) that the weight enu-
merator of a Type IV code remains invariant under the action of group
G4 of order 12 which is generated by the following two matrices:

1

2

[
1 3
1 −1

]
and

[
1 0
0 −1

]
,

which corresponds to the MacWilliams identity and the modulo 2
congruence condition, respectively. In particular, for the case of the
group G4 a Magma computation gives the denominator d(u)d(v) of
f(u, v), where

d(u) = (1−u+u2)(1+u+u2)(1+2u6+3u12+4u18+5u24+6u30+7u36).

Example 5.6 (length 2). Let CIV
2 be a Hermitian self-dual code over

F4 of length 2 in [18]. Then

f [2] = u2 + uv + v2
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If |T | = 1, we have

JCIV
2 ,1 =

1

2
AWCIV

2
(x, y)

= wx+ 3zy.

Example 5.7 (length 4). Let CIV
4 be a Hermitian self-dual code over

F4 of length 4 in [18].

f [4] = u4 + u3v + 2u2v2 + uv3 + v4.

Observe that

JCIV
4 ,1 =

1

4
AWCIV

4
(x, y) = wx3 + 3wxy2 + 3zx2y + 9zy3.

The space of Jacobi polynomials JCIV
4 ,T with |T | = 2 is generated by

the two polynomials

J1
CIV

4 ,2 = w2x2 + 6wzxy + 9z2y2,

J2
CIV

4 ,2 = w2x2 + 3w2y2 + 3z2x2 + 9z2y2.

Combining these two equations we obtain 2-designs with parameters

2-(4, 2, 04, 12).

Since k = 2, dividing the coefficient of the term z4y2 in the Jacobi
polynomials by 2, we obtain the values of λ1, λ2. This gives packing
and covering designs

D1(4, 2, 2) ≤ 2 ≤ C0(4, 2, 2).

Example 5.8 (length 6). Let CIV
6 be the first Hermitian self-dual code

over F4 of length 6 in [18].

f [6] = 2u6 + 2u5v + 3u4v2 + 3u3v3 + 3u2v4 + 2uv5 + 2v6.

Observe that

JCIV
6 ,1 =

1

6
AWCIV

6
(x, y) = wx5+6wx3y2+9wxy4+3zx4y+18zx2y3+27y5.

The space of Jacobi polynomials JCIV
6 ,T with |T | = 2 may be generated

by the two polynomials

J1
CIV

6 ,2 = w2(x4 + 6x2y2 + 9y4) + z2(3x4 + 18x2y2 + 27y4),

J2
CIV

6 ,2 = w2(x4 + 3x2y2) + wz(6x3y + 18xy3) + z2(9x2y2 + 27y4).

Combining these two equations we obtain 2-designs with parameters

2-(6, 2, 012, 13),

2-(6, 4, 112, 23).
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Since k = 2ℓ (1 ≤ ℓ ≤ 2), by dividing the coefficient of the term z2yk−2

in the Jacobi polynomials by 3ℓ, we obtain the values of λ1, λ2. This
gives packing and covering designs

D1(6, 2, 2) ≤ 3 ≤ C0(6, 2, 2),

D2(6, 4, 2) ≤ 3 ≤ C1(6, 4, 2).

Example 5.9 (length 8). Let CIV
8 be the third Hermitian self-dual

code over F4 of length 8 in [18].

f [8] = 2u8+3u7v+4u6v2+4u5v3+5u4v4+4u3v5+4u2v6+3uv7+2v8.

Observe that

JCIV
8 ,1 =

1

8
AWCIV

8
(x, y)

= w(x7 + 21x3y4 + 42xy6) + z(21x4y3 + 126x2y5 + 45y7),

JCIV
8 ,2 =

1

8 · 7
A2WCIV

8
(x, y)

= w2(x6 + 9x2y4 + 6y6) + wz(24x3y3 + 72xy5)

+ z2(9x4y2 + 90x2y4 + 45y6),

JCIV
8 ,3 =

1

8 · 7 · 6
A3WCIV

8
(x, y)

= w3(x5 + 3xy4) + w2z(18x2y3 + 18y5)

+ wz2(18x3y2 + 90xy4) + z3(3x4y + 60x2y3 + 45y5).

The space of Jacobi polynomials JCIV
8 ,T with |T | = 4 may be generated

by the two polynomials

J1
CIV

8 ,4 = w4(x4 + 3y4) + 36w2z2(x2y2 + 36y4)

+ 96wz3xy3 + z4(3x4 + 36x2y2 + 45y4),

J2
CIV

8 ,4 = w4x4 + 12w3zxy3 + w2z2(18x2y2 + 36y4)

+ wz3(12x3y + 96xy3) + z4(36x2y2 + 45y4).

Combining these two equations we obtain 4-designs with parameters

4-(8, 4, 056, 114).

This gives packing and covering designs

D1(8, 4, 4) ≤ 14 ≤ C0(8, 4, 4).
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Example 5.10 (length 12). Let CIV
12 be the seventh Hermitian self-dual

code over F4 of length 12 in [18].

f [12] = 3u12 + 4u11v + 6u10v2 + 7u9v3 + 8u8v4 + 8u7v5 + 9u6v6 + 8u5v7

+ 8u4v8 + 7u3v9 + 6u2v10 + 4uv11 + 3v12.

Observe that

JCIV
12 ,1

=
1

12
AWCIV

12
(x, y)

= w(x11 + 30x7y4 + 108x5y6 + 585x3y8 + 300xy10)

+ z(15x8y3 + 108x6y5 + 1170x4y7 + 279y11).

The space of Jacobi polynomials JCIV
12 ,T

with |T | = 2 may be generated
by the two polynomials

J1
CIV

12 ,2
= w2(x10 + 30x6y4 + 60x4y6 + 105x2y8 + 60y10)

+ wz(96x5y5 + 960x3y7 + 480xy9)

+ z2(15x8y2 + 60x6y4 + 690x4y6 + 1260x2y8 + 279y10),

J2
CIV

12 ,2
= w2(x10 + 18x6y4 + 48x4y6 + 165x2y8 + 24y10)

+ wz(24x7y3 + 120x5y5 + 840x3y7 + 552xy9)

+ z2(3x8y2 + 48x6y4 + 750x4y6 + 1224x2y8 + 279y10),

which gives packing and covering designs

D5(12, 4, 2) ≤ 15 ≤ C1(12, 4, 2),

D12(12, 6, 2) ≤ 52 ≤ C10(12, 6, 2),

D110(12, 8, 2) ≤ 255 ≤ C90(12, 8, 2).

Example 5.11 (length 14). Let CIV
14 be the first Hermitian self-dual

code over F4 of length 14 in [18].

f [14] = 3u14 + 5u13v + 7u12v2 + 8u11v3 + 10u10v4 + 10u9v5 + 11u8v6

+ 11u7v7 + 11u6v8 + 10u5v9 + 10u4v10 + 8u3v11 + 7u2v12

+ 5uv13 + 3v14.

Observe that

JCIV
14 ,1

=
1

14
AWCIV

14
(x, y)

= w(x13 + 18x11y2 + 135x9y4 + 540x7y6 + 1215x5y8 + 1458x3y10

+ 729xy12) + z(3x12y + 54x10y3 + 405x8y5 + 1620x6y7 + 3645x4y9

+ 4374x2y11 + 2187y13).
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The space of Jacobi polynomials JCIV
14 ,T

with |T | = 2 may be generated
by the two polynomials

J1
CIV

14 ,2
= w2(x12 + 18x10y2 + 135x8y4 + 540x6y6 + 1215x4y8 + 1458x2y10

+ 729y12) + z2(3x12 + 54x10y2 + 405x8y4 + 1620x6y6 + 3645x4y8

+ 4374x2y10 + 2187y12),

J2
CIV

14 ,2
= w2(x12 + 15x10y2 + 90x8y4 + 270x6y6 + 405x4y8 + 243x2y10)

+ wz(6x11y + 90x9y3 + 540x7y5 + 1620x5y7 + 2430x3y9

+ 1458xy11) + z2(9x10y2 + 135x8y4 + 810x6y6 + 2430x4y8

+ 3645x2y10 + 2187y12),

which gives packing and covering designs

D1(14, 2, 2) ≤ 7 ≤ C0(14, 2, 2),

D6(14, 4, 2) ≤ 21 ≤ C1(14, 4, 2),

D15(14, 6, 2) ≤ 35 ≤ C5(14, 6, 2),

D20(14, 8, 2) ≤ 35 ≤ C10(14, 8, 2),

D15(14, 10, 2) ≤ 21 ≤ C10(14, 10, 2),

D6(14, 12, 2) ≤ 7 ≤ C5(14, 12, 2).

Example 5.12 (length 16). Let CIV
16 be the 35th Hermitian self-dual

code over F4 of length 16 in [18].

f [16] = 3u16 + 5u15v + 8u14v2 + 9u13v3 + 11u12v4 + 12u11v5 + 13u10v6

+ 13u9v7 + 14u8v8 + 13u7v9 + 13u6v10 + 12u5v11 + 11u4v12

+ 9u3v13 + 8u2v14 + 5uv15 + 3v16.

Observe that

JCIV
16 ,1

=
1

16
AWCIV

16
(x, y)

= w(x15 + 21x13y2 + 189x11y4 + 945x9y6 + 2835x7y8 + 5103x5y10

+ 5103x3y12 + 2187xy14) + z(3x14y + 63x12y3 + 567x10y5

+ 2835x8y7 + 8505x6y9 + 15309x4y11 + 15309x2y13 + 6561y15).
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The space of Jacobi polynomials JCIV
16 ,T

with |T | = 2 is generated by
the following two polynomials:

J1
CIV

16 ,2
= w2(x14 + 21x12y2 + 189x10y4 + 945x8y6 + 2835x6y8 + 5103x4y10

+ 5103x2y12 + 2187y14) + z2(3x14 + 63x12y2 + 567x10y4

+ 2835x8y6 + 8505x6y8 + 15309x4y10 + 15309x2y12 + 6561y14),

J2
CIV

16 ,2
= w2(x14 + 18x12y2 + 135x10y4 + 540x8y6 + 1215x6y8 + 1458x4y10

+ 729x2y12) + wz(6x13y + 108x11y3 + 810x9y5 + 3240x7y7

+ 7290x5y9 + 8748x3y11 + 4374xy13) + z2(9x12y2 + 162x10y4

+ 1215x8y6 + 4860x6y8 + 10935x4y10 + 13122x2y12 + 6561y14),

which gives packing and covering designs

D1(16, 2, 2) ≤ 8 ≤ C0(16, 2, 2),

D7(16, 4, 2) ≤ 28 ≤ C1(16, 4, 2),

D21(16, 6, 2) ≤ 56 ≤ C6(16, 6, 2),

D35(16, 8, 2) ≤ 70 ≤ C15(16, 8, 2),

D35(16, 10, 2) ≤ 56 ≤ C20(16, 10, 2),

D21(16, 12, 2) ≤ 28 ≤ C15(16, 12, 2),

D7(16, 14, 2) ≤ 8 ≤ C6(16, 14, 2).

Example 5.13 (length 18). Let CIV
18 be the 225th Hermitian self-dual

code over F4 of length 18 in [18].

f [18] = 4u18 + 6u17v + 9u16v2 + 11u15v3 + 13u14v4 + 14u13v5 + 16u12v6

+ 16u11v7 + 17u10v8 + 17u9v9 + 17u8v10 + 16u7v11 + 16u6v12

+ 14u5v13 + 13u4v14 + 11u3v15 + 9u2v16 + 6uv17 + 4v18.

Observe that

JCIV
18 ,1

=
1

18
AWCIV

18
(x, y)

= w(x17 + 24x15y2 + 252x13y4 + 1512x11y6 + 5670x9y8

+ 13608x7y10 + 20412x5y12 + 17496x3y14 + 6561xy16)

+ z(3x16y + 72x14y3 + 756x12y5 + 4536x10y7 + 17010x8y9

+ 40824x6y11 + 61236x4y13 + 52488x2y15 + 19683y17).
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The space of Jacobi polynomials JCIV
18 ,T

with |T | = 2 may be generated
by the two polynomials

J1
CIV

18 ,2
= w2(24x14y2 + 252x12y4 + 1512x10y6 + 5670x8y8 + 13608x6y10

+ 20412x4y12 + 17496x2y14 + 6561y16) + z2(3x16 + 72x14y2

+ 756x12y4 + 4536x10y6 + 17010x8y8 + 40824x6y10

+ 61236x4y12 + 52488x2y14),

J2
CIV

18 ,2
= w2(21x14y2 + 189x12y4 + 945x10y6 + 2835x8y8 + 5103x6y10

+ 5103x4y12 + 2187x2y14) + wz(6x15y + 126x13y3 + 1134x11y5

+ 5670x9y7 + 17010x7y9 + x5y11 + 30618x3y13 + 13122xy15)

+ z2(9x14y2 + 189x12y4 + 1701x10y6 + 8505x8y8 + 25515x6y10

+ 45927x4y12 + 45927x2y14),

which gives packing and covering designs

D1(18, 2, 2) ≤ 9 ≤ C0(18, 2, 2),

D8(18, 4, 2) ≤ 36 ≤ C1(18, 4, 2),

D28(18, 6, 2) ≤ 84 ≤ C7(18, 6, 2),

D56(18, 8, 2) ≤ 126 ≤ C21(18, 8, 2),

D70(18, 10, 2) ≤ 126 ≤ C35(18, 10, 2),

D56(18, 12, 2) ≤ 84 ≤ C35(18, 12, 2),

D28(18, 14, 2) ≤ 36 ≤ C21(18, 14, 2),

D8(18, 16, 2) ≤ 9 ≤ C7(18, 16, 2).

6. Concluding remarks

The g-th Jacobi polynomials of a binary code were introduced in [19]
which were generalized in [11] to the case of a non-binary code. This
rises a natural question: is there any possibility to give a generalization
of Theorem 4.3 for higher genus cases? We shall answer this question
in [9]. The study of this paper will be continued in [13] to the case
colored t-design, the idea that was introduce in [5]. Moreover, we
shall give the generalizations of the results in [11] for the g-th Jacobi
polynomial with multiple reference vectors in [12].
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