OBSERVATION ON THE WEIGHT ENUMERATORS FROM CLASSICAL INVARIANT
THEORY

By MANABU OURA!

The purpose of this paper is to present some relationships among invariant rings. This is
done by combining two maps, the Broué-Enguehard map and Igusa’s p homomorphism. For
the completeness of the story, some formulae and statements are given which are not necessarily
needed in the present manuscript. Sections 1 and 2 have some expository nature and contain no

new result.

1. Classical Invariant Theory. In this section we recall classical invariant theory. For the

detail we refer to [18]. We consider a homogeneous polynomial

n
5 (1)
i=0

of degree n in 2 variables x, y. The group SL(2,C) operates on the variable space and, if we
require that the above form is invariant, the same group operates on the coeflicient space. In
this way, we get an irreducible representation of SL(2,C) of degree n + 1. We consider the
graded ring of polynomials in the ug, u1, ..., u, with coefficients in C and operate SL(2,C) on
this graded ring using its action on its homogeneous part of degree one defined by the above
representation. Then, the invariant subring S(2,n) is a graded, integrally closed, integral domain
over C. In the present paper we deal with S(2,4) and S(2,6). The structure theorems of those
rings are established in the 19th century and we shall describe them. The invariant ring S(2,4)
is generated by P, ), which are algebraically independent. The explicit forms are

P = upuyg — duqus + 3u§,

upg U1 U2

Q=det | u; wus wus

U2 U3 Ug

and the dimension formula of S(2,4) is
1

(1 —12)(1—13)
in which the coefficient of ¢* denotes the dimension of degree k-part of S(2,4). The invariant
ring S(2,6) is generated by Ja, Jy, Js, J10, J15. We give the definitions of Js,...,Ji5 in the
appendix, taken from [18]. Among them J, Jy, Jg, Jig are algebraically independent. The ring

=142+ 4+ 0+ 205 +t7 208 26 + 2610 4 261t 312 - -

ClJa, Ju, Jg, J1o] contains JZ but not Ji5. We also give the explicit formula for J in the
appendix. The dimension formula of S(2,6) is given by

141
(1—12)(1—t4)(1—16)(1 — t19)

=142+ 2¢* + 3t + 4% + 6610 + 812 + 10t +¢1°

+ 13810 + 17 1 16618 + 2610 + 20620 + 32! 4 24¢%2
+ 4t23 + 29¢%4 4 6% + 34425 + 827 + 40t%8
+ 10627 447830 4.+ .
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2. Weight Enumerators and Siegel Modular Forms. In this section we recall coding
theory and Siegel modular forms. For the details we refer to [1], [15] for coding theory and to
[3] for Siegel modular forms. Let Fgy be the field of two elements. A linear code (a code for
short) of length n is a subspace of F4. The vector space F§ equips with the inner product
x-y =Y. z;y;. We define the weight wt(v) of a vector v € F} by the number of the non-zero
coordinates of v. We shall define special classes of codes. If a code C' coincides with its dual
code C+ = {x € F¥|(z,y) = 0, Yy € C}, it is called self-dual. We observe that the dimension
of the self-dual code is a half of its length. If the weight of any element in C' is divisible by 4, it
is called doubly-even. In this manuscript we will focus on the self-dual doubly-even codes. We
shall next define a homogeneous polynomial of the code which is on the title of this paper. The
weight enumerator Wég) of the code C in genus g is defined by

Wég) _ Wég)( ‘a €FY) Z H mna(vh ~g)

V1,--+,Vg aEFg

where nq(v1, ..., v4) denotes the number of ¢ such that a = (vi4,...,v4:). If we need the ordering
of the elements of F3, we fix F§ = {0---00, 0---01, 0---10,...,1---1}. We sometimes use
the symbols z,y, z, ... instead of the x,’s for simplicity. The weight enumerator in genus 1 is

interpreted as

1) _ Z xnfwt(v)ywt(v)’

vel
where n denotes the length of the code C'. In this case the weight enumerator of a self-dual

doubly-even code is a symmetric polynomial in the variables x,y. The examples are
1 _ .8 4,4 | 8
We(s)—x + 1da™y™ + °,
WD = 22 4 7592168 4 257621212 + 7592510 + ¢

g24

where eg denotes the extended Hamming code and go4 the extended Golay code. We omit the
definitions of eg, go4 as well as d,} appearing below and refer to the references cited above. In
the case when g = 2 the weight enumerator of a self-dual doubly-even code is also symmetric in

the variables z,y, z, w. We have

W = (8) + 14(4,4) + 168(2,2,2,2),
W{2) = (24) + 759(16, 8) + 2576(12, 12) + 212520(12, 4,4, 4) + 340032(10, 6,6, 2)
+22770(8, 8,8) + 1275120(8, 8, 4, 4) + 4080384(6, 6, 6, 6),
where (8) = 28 + 8 + 2% + w8, (12,4,4,4) = 22yttt + 2fyl220w? + 2ty 22wt + 2tytztw!?,
etc. For an arbitrary positive integer n, n = 0 (mod 8), we have
n/2
2 1 o
W =g 2| X 0
B,7EFZ \ a€F2

We note that, for g > 3, the weight enumerator of a self-dual doubly-even code is not symmetric
in general. We shall next view the weight enumerator from invariant theory of some finite group.
Let Hy (g > 1) be a finite subgroup of GL(29, C) generated by

1+i)? u
< 5 > ((—l)a'b)a’bng, dlag( Slal. g € Fg) S =15 € Matyx4(Z),



where A[B] = 'BAB for matrices A, B of suitable sizes. H, has a normal subgroup N, &
Z/AZ 2?29 such that Hy/N, =2 Sp(g,F2), where % denotes the central product and 2?29 the
extra special 2-group of order 1+2g of “+” type. The finite group H, has an order 29°+29+2 (49 —
1)(4971 —1)--- (4 — 1). We define another finite group G, which is generated by H, and the
primitive eighth root of unity. The group G4 contains H, as a subgroup of index 2. We have
defined two finite groups so far. The group which directly concerns the weight enumerators
is Gy. Indeed the weight enumerator of any self-dual doubly-even code is invariant under the
action of Gy. Moreover the invariant ring of G4 can be generated by the weight enumerators
of the self-dual doubly-even codes for any g (cf. [4], [6], [2], [5], [17], [11], [21]). Therefore we
may regard the invariant ring Clz,;a € Fg]Gs as the ring of weight enumerators of the self-dual
doubly-even codes in genus g.

Igusa’s homomorphism is, under some condition, one from the ring A(T';) of Siegel modular
forms to the ring S(2,2g + 2) of projective invariants of a binary form of degree 2g + 2 (see [7]).
We recall that that the ring A(I'y) is the graded ring generated by holomorphic functions v on
the Siegel upper-half space G, in genus g satisfying the functional equation

V(M - 1) = det(er + d)* - (1)

for every M in I'y = Sp(g, Z) (plus a condition at infinity for g = 1). In order to construct Siegel
modular forms, we introduce the theta-constants. Theta-constants 0,,/,,~ (7) are defined by
O (7) = 3 2\/_1<1 {+m/]+t<+m/)m”)
m/m/' (T =, eXp 27 27' p 2 p 2 5 )
in which m’ and m” are the column vectors in RY. If we put f/(7) = 0m0(27), the Broué-
Enguehard map T'h is defined by z, — f,. A modular form is called a cusp form if it is in the
kernel of Siegel’s ®-operator which maps a modular form of genus g to a modular form of genus
g— 1.
The structures of the invariant rings and of Siegel modular forms in small genera are known.
We shall describe the cases ¢ = 1, 2. First suppose that g = 1. The groups Hy, G; are finite
unitary reflection groups of order 96, 192, respectively (No.8, No.9 in the list of [19]). We have

Cla, )" = WV, 1Y), Cla,yS = ), W),

esg eg ? 924
where
hg12) — g2 33$8y4 . 33$4y8 + y12.
The dimension formulae of these invariant rings are given by

1 1
(1—t3)(1—t12)" (1—1¢8)(1 —¢>4)’

The map Th induces the isomorphisms? C[z,y]* —— A(T';) and C[z,y]% —— A(T'})@.
Here we remark that A(T;) = A(T;)®. The invariant ring C[z,y]%* is a subring of C[z,y]"

and we observe that
1) _ —19—2 1)\3 —19—2/7(1)\2
W) =11-271372(W )3 + 7. 27137 2(hiy))%

2If S is a graded ring composed of homogeneous parts Sj, with k running over non-negative integers and if d
is a positive integer, then S(d) = Dr>05dk-




The isomorphisms above are given by

Th(W) = ¢a(w),
Th(hy) = (),
ThW D)) =11-271372(¢y(w))® + 7- 27137 2(¢(w))?,

g24

where ¢ (w) denotes the normalized Eisenstein series of weight k: ¢p(w) =1+ ---.

We shall next discuss the case when g = 2. The group Hs is a finite unitary reflection group of
order 46080, No.31 in the list of [19]. The invariant ring of Hj is generated by the four elements
w® W@

€8

924>

W2 = (12) — 33(8,4) + 330(4, 4, 4) + 792(6, 2,2, 2),
Fyo = (20) — 19(16, 4) — 336(14, 2,2, 2) — 494(12, 8) + 716(12, 4, 4)
+1038(8, 8, 4) + 7632(10, 6,2, 2) + 106848(6,6, 6, 2) + 129012(8, 4, 4, 4).

The dimension formula of this ring is

1

= 1+t t12 10 220 1 3424 1 228 4 432 430 45140 4.
(D (D) + 8+ 10+ 2020 4307 4+ 2428 + 4472 4+ 470 + 5140 +

The group G2 contains Hy by index 2 and is not a finite unitary reflection group. The invariant
ring is generated by Wef), Wéf}, w2 W(i) and Wﬁ). The four elements We(sz), Wéf}, w2 Wﬁ)
40

+ +
day ds; 40 day

are algebraically independent and the square of Wﬁ) is written by the polynomial in T/Ve(a2 ), Wg(i) ,
32
W W as follows:

+ +
dsy dio

(W22 = 11332621 - 374517 241 L (WD)®

di
8 —4r—1r—271—-141—-1 2)\5 2
— 2860289 - 374571721141 (W2 P w2
+24821477- 3745 17 1 a1 (W @) w )

d24

Y, YU _ 2
+2.751- 3727 a1 (W W D)

32

—2°11%. 3717 T (W @R Y
40

+21163 - 3747211241 (W )2 (W D)2

g24

11 —4r—191-2,41—1 2\2777(2) 147 (2)
+2173.79. 3747 11241 (WD) W5§24>Wd2+4

6 —441-241—1 2)\2 (a7 (2))2
—20107-499 - 3741172417 (WP) W)

— 283893727 111 1 W AW AW

924 d;

+2%5.197 37211 41w AW D
8 d24 32
924

+2237 5 w2 w Y
40

+23 5 T w P w ),

24 dz—o
This was given in [21]. The dimension formula of this invariant ring C[z,y, z, w]%? is

1+ %
(1—8)(1 — £24)2(1 — t49)

=145+ 10 + 362 + 432 + 5640 + 8¢*® + 106°% + 12654 + - ..



The elements Wﬁ), Wﬁ), Wﬁ) can be written by the generators of C[z,y, z, w]!? as follows:
24 32 40

W = 1123727 L (WD) +2.372(h{Y)? — 237w )

%, o
W' =43.53. 377 (W) + 252337117 WD (h())?
32

S, PO _ — 2
— 20433727711 W AW 1 2537503 By,

924

W;g =3-19. 771(We(82))5 4+92.5.7.557- 3771171(Wé:))2(h§22))2

— 23519 77 11 (WD) WR) 4 20523 TW DR Fag + 225 - 41-37TF2).

4

We give a comment on the paper [9]. In that paper, Maschke determined the invariant ring of
some finite group G. G is a subgroup of SL(4, C) and has an order 46080 which is the same as
our Hs. G is a subgroup of our G5, which is of an order 2 - 46080 = 92160. H; is generated by

three elements

(S5 (),

)

,» diag (1,1,v=1,v-1), diag(1,1,1,-1),
2

and Gy by Hy and %, while G is generated by

1+ a-b L4+ — — 14+ .
( 2 ) ((_1) )a,bng’ W.dlag (1’1’ _1’ _1)’ W'dlag(1’171a_1)'

The dimension formula of Clx,y, z,w] is given by

L4152 4190 4-¢%2
(1—18)(1 —t24)2(1 — t40)

From the dimension formulae, for example, we can read off the differences among the invariant
rings of the said groups.
We continue our discussion on our case. We shall recall that A(T'z) is generated over C by five

elements and they are3

=Y 0
22 g = Z + (9m19m29m3)47

syzygous
-2 x10 = H (9m)27
2173 *X12 = Z (o’mlom.g o 0m6)4 ’

23953\/—_1 * X35 = (H Hm) ( Z + (9m19m29m3)20> :

azygous

In the second symmetrization, the monomial (6y,,0m,0m,)" with ‘m; = (0,0,0,0), tmg =
(0,0,0,1), Y'm3 = (0,0,1,0) has +1 as its coefficient. In the definition of Y12, the summa-
tion is extended over fifteen complements of syzygous quadruples. In the definition of yss,
the symmetrization of = (B, 0my0m,)>" is taken by the stabilizer of []6,, in Sp(2,Z) modulo

335 is not used in Section 3.



the stabilizer of (0, 0m,0m,)> with ‘m; = (0,0,0,0),'my = (0,0,0,1),*ms = (0,1,0,0). The
Broué-Enguehard map gives rise the following:

Th(W?)
Th(h3)
Th(Fy)
( 924)

a,
(e
Yatbs + 223%x10,
11-271372938 4+ 7-27137 292 — 219327 - 11yg0.

These can be obtained by comparing the Fourier coeflicients (¢f. [16], [14], [13]). There have
been extensive studies on Fourier coefficients of Siegel modular forms, however, in our case we
do not need a deep theory of Fourier coefficients. Since there is a misprint in the definition of
F; in [8] (corrected in [10]), we reproduce the formulae which are useful for our computations of

Fourier coefficients. In the case when g = 1, we shall use w instead of 7. If we put

o0 oo

Fo(r)=3_r",  Fu(r) =) r®2,

p=1 p=1
in which r = exp mv/—1w, then we have
Boo(w) =1+ 2Fu(r), bo1(w)=1+2Fy(—r), bOio(w)=2F(r).
In the case when g = 2 if we put

FO(TMTQ) FO(T1)+F0 TQ Z Apl ;D2rl T2 )

p1,p2=1

Fi(r1,m2) = Fi(r2) Z B,, p27,11’1rép2 1/2)? ,

p1,p2=1

Fy(r1,re) = Fi(ra,m1),

2 _ 2
y(r1,72) Z Cpy ot (101 1/2) (P2 1/2)7

p1,p2=1

E : (171*1/2)2 (p2—1/2)*

Tlv TQ Dpl p2T T2 )
p1,p2=1

in which 1 = exp wv/—171,73 = exp wv/—172, q12 = exp 2wv/—1712, and

Apypr = 4057 + a9 2,

By, p, = Qfé(m_lm) + q1_21‘71(202—1/2)7

Cprpy = (Agl_lm)(m_lm) + (11—2(201—1/2)(;02—1/2)7

Dy p = (—1)P 7= 1g = U/202=1/2) | (qymr—pa = (1=1/ D2 -1/2),



then we will have

o000 () = 1+ 2Fy(r1,72), o001 (7) = 14 2Fp(r1, —72),
0o010(7) = 1+ 2Fp(—71,72), Oo011(7) = 1+ 2Fp(—r1, —72),
o100(7) = 2F1(r1,72), o110(7) = 2F1 (=11, 72),
61000(7) = 2F5(r1,12), 61001(T) = 2F5(r1, —12),
O1100(7) = 2F35(r1,72), O1111(7) = 2Fy(r1,72).

Cusp forms can be written by Eisenstein series as follows:

X10 = —43867 - 271237557277 1537 1 (44906 — 1h10)
X12 = 131- 593271337 757377233771 (32729 + 2 - 5%4¢ — 691412 .

We note that there is a misprint in the formula of x19 at p.102 in [16].

3. The Broué-Enguehard map and Igusa’s homomorphism. Before proceeding to
Igusa’s homomorphism studied in [7], we go back to the invariant rings S(2,4), S(2,6). In
addition to the generators of them given in Section 1, we give the different generators in irrational

forms. If we decompose a binary form into linear factors as

n n—i_ i -
<Z>uzx y' =u [J(= - &),
i=1

s.
I M:
[}

then we have

n\ ui -
()a-Se ()z-Tee

1<j

<Z) Hfz

Preparing this, we consider each case separately®. We put Pagio(x) = ug(z —&1)(x— &) -+ (z—
&2g+2). Suppose that g = 1. In [7], Igusa takes Io(Py(x)), Is(Pys(z)) as the generators of S(2,4),

given as follows:

L(Py(z)) = uf Y (12)*(34)°

three
=ug {(12)%(34)> + (13)*(24)*> + (14)*(23)*},
Is(Py(z)) = uf > _(12)%(34)%(13)(24)

six

= uj {(12)%(34)* {(13)(24) + (14)(23)} + (13)*(24)*{(12)(34) — (14)(23)} +
(14)*(23)*{—(12)(34) — (13)(24)} } .

Here (i7) is an abridged notation for £; —&;. We already gave the generators of S(2,4) in Section
1 and these two sets of the generators are related each other by

L(Py(z)) = 2°3P,  I3(Pi(z)) = 2'3°Q.

4We note that the case when g = 1 is roughly sketched in [12].



Combining two maps Th and p to denote p, we have the isomorphism C[z, y] =8 (2,4) given
by

5(We(81)) =271 (Py(2)),

phiy) = 27 Is(Pa(x)).
If we use P, @ defined in Section 1, then

pWS) = 2°3P,
p(hiy) = 2°3°Q.

We also get

Cle, ) = 5(2,4)?,
where

WG] = 112793721 (Py(x))® + 7- 2723 I3 (Pa(x))?
=293 (11P° + 3°7Q%) .
We shall next consider the case when g = 2. In [7] the following elements® are used as the

generators of S(2,6).

A(Ps(2)) = ug Y (12)°(34)(56)?,

fifteen
B(Ps(x)) = ug y_(12)*(23)%(31)°(45)*(56)*(64)°,
C(Ps(z)) = ug Z(12)2(23)2(31)2(45)2(56)2(64)2(14)2(25)2(36)2,
D(Ps(x)) = ug” (12)°(13)* - - (56)°,

fifteen

1 &G +& &é
E(Ps(z)) =ug® J] det [1 &+& &&
fifteen 1 & +8& &58

There hold the following relations.

A(Ps(z)) = —2%3 - 5.Ja,

B(Ps(z)) = 2°3%5 (J3 — 2°5° ) |

C(Ps(z)) = 2%3%5 (—2"13J3 + 203252 JoJy + 5°J5) ,

D(Ps()) = 2°3 (22571J5 + 293253 J3 Jy + 22543 Jg — 203457 Jo J§ + 233%5° JyJs — 3%5°J10) |
E(Ps(x)) = 2239510 J35.

5We note that we do not need E in this paper.



We do not need the formula of E? in this paper, however, since it is not contained in [7], we give
the explicit formula of E2. This is derived from the formula of JZ in the appendix, or directly.

E? = (1/2"13%) (A"B* — 2?3A°B3C — 2%3°A°B*D
+2-3-134°B° +2-3%4°B2C? 4+ 233°A°BCD + 223'°A°D?
— 2232374 B*C — 223%239A*B®D — 2233 A*BC® — 2237 A*C?D
—3-534%B% +2.3% . 1143B3C? 4 293°7A® B*CD + 2°375?11 A3 BD?
+3%A430% 4+ 2633 A2 B°C + 2*3%457A2BYD — 203317A42B2C3
—2%3%5.5342BC?D — 273853 A2CD? + 2*5AB™ — 2°337AB*C?
—20355.61AB3CD — 20375329 AB? D? + 2*3*37ABC* + 203752 AC3 D
_ 273360 _ 2934B5D + 28333303 4 29365QBQCQD
+23%5*BCD? — 273°C° + 2'1395° D?) .

Igusa used this to get the expression for x35 in [7]. Igusa’s p-homomorphism is given by

p(iha) = 27%B,
p(the) = 27°(AB — 3C)
= 3%5 (—2°19J3 + 2°3%5% o Jy — 5°Jg)
p(x10) = —27D,
p(x12) = 271737 AD
=3%5.2719(—22571J5 — 25325375 J, — 2254 T3 J + 203455 2 77
— 233255 1o Ju Js + 335° 0y 1),
plxss) = —2739/—1D*E.

This homomorphism is injective (Theorem 5 in [7]). If we shall denote by p the composition of

the Broué-Enguehard map and Igusa’s p-homomorphism, we will have
V) = p(ia)
=272B,
PR = p(v)
=273(AB - 30),
P(Fa0) = p(tbatbs + 2'23%x10)
=27°(AB* - 3BC —2°3'D)
=37 (—2"523J5 + 275°53J3 Jy — 5113 J3Js — 2°3%5°JpJf — 2°5°11J4J6 + 2 - 3°5°J1)
W) = p(11- 27137298 + 727137 2y¢ — 210327 - 11y12)
=277372(7A’B? —2-3-TABC — 3°7-11AD + 11B* + 3*7C?)
=3%5-271(2064323J5 — 22315317 - 397J3J, + 23527 - T1T3 Jg
+ 2135551223277 — 243°557. 0y 04 Js — 2 - 34557 - 1105730
— 2035581173 + 577.J3).



Using these formulae, we know the p image of the generators (except We(g2 ), Wg(22 4) ) of Clz, y, 2, w]“?

as follows:

pwvs

+
d24

) = 51123727 (WP 4+ 2. 372(h())? - 2271w @)
=279372(-24%B% + 223ABC + 2?3°11AD + 11B* — 2 - 32C?)
= 3%5(—409 - 15495 — 22335459051, — 275*13.J3 T + 243°5°463.J2 T}
— 20335 Jo Jy Js + 283457110010 — 2630581105 — 2. 57.72),
W) = 5(43-53- 3747 (WP)* 4 24523375111 W D (h(2)>

+ e
d3y 8

— 26433727 11 WA W) + 263750 Fog)
=278373(—2'A%B3 + 2°3AB?C + 2°3°ABD + 43B* — 2*3?BC? + 2933CD)
= 3°5(—286322081.J5 4 21325231 - 59 - 5477J5J, — 2115317 - 83.J5 Js
+ 2536597 . 4375 7 4 29335513 - 61730406 + 2033557 - 23375 J1o
— 28355737. 2397203 — 245713J2.J2 — 2113557 Jo 2 Js — 2835571670504 10
+ 2838511437} + 26325841.7,02 — 273%58J6.J10),
ﬁ(Wl%) = 5(3-19- 7 (WP)5 +2.5-7-557- 3711 (WD) (h3))?
—2%5-19 -7 11 (W)W + 25523 "W R Fog + 225 - 41 - 37TFR,)
=2710372(—2.54%B* + 2?3 . 5AB3C + 223'5AB?D + 19B°
—2-3%5B2C? +2°3%5BCD + 28335 - 41D?)
= 375(—4129 - 5298991.J1° 4+ 223253157 - 8119907.J5.J, — 26517 - 2517171 J¢
— 25355513 - 409 - 3121.J5 77 + 20325573 - 44887.J5 J4Jg + 233355397 - 1867.J5 J10
— 27355867 - 6317505 +2- 5811 - 1103.J3J2 — 29315823609.J35.77 J5
— 2035582257173 1,710 + 283851055901.73.7F + 2*325%5639.J3 J4.J2
— 24335973302 Js J1o + 21035510379.75,.03 J + 273751017 - 163157 J1o
— 21035141975 _ 953151023 . 1817272 4 263°51061.J,.J5.J10 + 23951041.73)).

We observe that the p images of A(T'5)?), A(T'y)® are strictly smaller than S(2,6)), S(2,6)®,
respectively. On the other hand, it is known that the Broué-Enguehard map induces the isomor-
phisms Clz,y, z,w]? = A(T'5)? and C[z,y, z, w]? = A(I'5)®). Therefore the p images of the
rings Clz,y, z, w2, Clz,y,z, w]% are strictly smaller than S(2,6)), S(2,6)®), respectively.

Summing up,

THEOREM. Let p be the composition of the Broué-Enguehard map and Igusa’s p-homomorphism.

(1) In the case when g = 1, p gives rise to the isomorphisms from Clz,y]** onto S(2,4), and
from Clz,y]%t onto S(2,4)?).

(2) In the case when g = 2, p transforms injectively Clx,y, z, w|?2 and Clz,y, z,w]%? into
S(2,6). The p images of these invariant rings are strictly smaller than S(2,6)?), S(2,6)®),
respectively.

The explicit p-images of the generators of each invariant ring are given above in two ways
each.

10



We give remarks.

(1) Since Igusa’s p homomorphism increases the weight or the degree by a %g ratio, our p
increases the degree by a ig ratio. This remark holds in the arbitrary genus g. Here we note
that Siegel modular forms we are considering are always of even weights.

(2) The weight enumerator of a code has non-negative integers as its coefficients(in the arbitrary
genus). We shall consider the case when g = 1. The p image of the weight enumerator has

negative coefficients as the polynomials in Clug, w1, ug, us, u4] in general. For example, we have

ﬁ(We(Sl)) = 223 (upuy — 4uquz + 3u3),
ﬁ(Wgﬁ) = 2°3 (11ujui — 132udurusui + 288ufuiul — 378udusuius + 189ugu;
— 378u0u%u2uz + 906u0u%u§u4 — 36u0u1ugu3U4 — 756u0u1uQu§
— 8luguyug + 378uouiul + 189ufu? — 756udusuzuy — 704udu’
+ 378uiudus +2340uiujul — 1944uqujus + 486uS) .
It would be interesting if we interpret this from coding theoretical or combinatorial point of view.
(3) We mention the paper [20] in which Shioda discussed the close relationship of the ring
S(3,4) of projective invariants to the invariant theory for the Weyl groups W(E7) and W (Es).
We omit the details.
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Appendix. We give the generators of S(2,6) from [18]. We also give the expression for J.

Jo = upug — 6urus + 15usuyg — 10u§,

up U1 U2 U3

Jy = det w2z st ,
Uz U3 Ug Us
U3 Uy Us  Ug
bo b1 be
Je=det | by by b3 |,
by b3 Dby

Jio = ug ¢ — 6uy be? + 3us(ac + 4b%)c — 4us(3abe 4 20%) + 3ug a(ac + 4b?) — 6us a®b + ug a®,

Chp C1 Cg C3 C4

Ci C2 C3 C4 Ch
J15 = det Cy C3 C4 Cy5 Cg |

€3 C4 C5 Cg Cr

C4 C5 Cg Cy C8

where

bo = 6(uguy — 4uus + 3u3),
by = 3(’LLQU5 — 3uiug + 2’(1,2U3),
bQ = UoUg — QUQU,4 + 8u§,
by = 3(u1u6 — 3ugus + ZU3U4),
by = 6(ugue — dusus + 3u421),
a = 2(upugug — 3ugusus + 2u0ui — u%uG + 3uquots — Ui U3UL — BUSM + 2uQu§),
b = upugug — UgUsUs — U LU UG — SULUIUS + 9u1ui + 9u§us) — 1Tuguzug + 8u§,
¢ = 2(upugug — uoug — 3uiusug + 3uiusus + 2u§u6 — UgU3U5 — 3uQuZ + 2u§U4),
co = 8(u(2)u5 — buguiug + 2ugugus + Su%w — 6u1u§),
c1 = U%UG + 2uguius — 19uguoug + 8u0u§ — GU%’LL4 + 44uqiuous — 30u§,
co = 2(uguiug — 2upuatis — 2ugUsty — 3UUU4 + 16u1u§ — lOugug),
c3 = uguaug — duguzus — 2u0u421 + 2u%u6 — buqugus + 24uugy — 15u§U4,
cq = 4(—uguqus + uugue + 3u1u?1 — 3u§u5),
C5 = —UgUqUg — 2u0u§ + duiuszug + 6uiugus + 2u§u6 — 24usuzus + 15u2ui,
¢ = 2(—ugusug + 2uiugug + 2ususug + ugugus — 16u§U5 + 10usu?),
cr = —uoug — 2uiusug + 19usuqug + 6uQu§ — 8u§u6 — 44usuqus + BOui,

cg = 8(—u1u§ + Bususug — 2uzusg — SU3u§ + 6uiu5).
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JE = 273710715 4 997 . 378 713 1, — 2737 . 3712 712 J;
— 7. 3751 g2 4 915379 710 7, Jo + 27377710 1
+2135.7.374J9J3 — 282937127972 — 2115. 374 8 J2
—295.375 8 JyJ10 — 2195 - 73720104 + 21011 - 3780 1, g2
+ 2737077 JgJio + 2105 - 11 - 370 JS T2 Js 4 2125 - 373 U5 JF J1o
—287.37 M 83 4 2173 . 7 g3 ) — 2N 33 IS IR
— 2105 37573 Ty JgJio + 2°373 5 I3, — 2155 - 173735y I 1 Js
— 215 37 gt T3 o + 212378 Ty JuJE + 2737603 JE Tio
— 2193277379 4+ 21931376 3 7302 + 21111 - 373303 I J1o
— 2837 3, 3 — 2713 - 3723 g8 + 22002 03 Js
+ 2193 .52  Jio — 213702 IR T8 — 295 - 370 2 T4 J2 Jio
+ 29373 2 Je I3y + 22134 Jo ) — 2107 - 373 0y 01 T2
— 2837V L I3 T J10 + 2930003 T3 + 29370 Jo Jy Jy
+ 2737 Ty JE J10 — 21978 Js — 21733 5 Jho
— 2133767378 4 211373 12 J2J10 4 2737 Ly s 2,
— 2737125 — 25 3.
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