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Abstract. The Eisenstein polynomial is the weighted sum of the weight
enumerators of all classes of Type II codes of fixed length. In this note, we
investigate the ring generated by Eisenstein polynomials in genus 2.

1. Introduction. Eisenstein series play important roles in the theory of
modular forms. Here we would like to mention two points. One is that the
Eisenstein series is, possibly up to a constant factor, the weighted sum of the
theta series of all classes of even unimodular lattices of fixed dimension([20].
cf. [21], [19]). Another is that the ring A(Γg) generated over the field C

of complex numbers by modular forms of even weights for the full modular
group in genus g is the normalization of the graded ring Bg generated over
C by Eisenstein series. This might suggest that Bg is close to A(Γg). In the
two special cases g = 1, 2, we know that A(Γg) coincides with Bg, however,
this is no longer true for g > 2. See [7], [8].

The Eisenstein polynomial in the title is analogue to the Eisenstein series,
that is, the weighted sum of the weight enumerators of all classes of Type
II codes of fixed length. By analogy with Eisenstein series, it is natural to
investigate the ring E(g) generated over C by Eisenstein polynomials. It is
a subring of the ring W(g) generated over C by weight enumerators of Type
II codes. In the first case g = 1, these two rings coincide but this does not
hold if g ≥ 2. The objective of this note is to determine E(2). We shall
show that E(2) is minimally generated by the ten Eisenstein polynomials of
degrees

8, 24, 32, 40, 48, 56, 64, 72, 80, 96

and coincides with W(2) except for homogeneous parts of lower degrees.
We shall denote by Z,F2 the ring of rational integers, the field of two

elements, respectively. For a finite set M , we shall denote by |M | the
number of elements of M .

2. Eisenstein polynomial. Let g be a positive integer. We understand
that an element of Fg

2 is a row vector. For A = (ea : a ∈ Fg
2) ∈ Z2g

≥0, we put

dimA = dimF2〈(1a) ∈ Fg+1
2 |ea > 0〉.

We introduce 2g variables xa of degree 1 for a ∈ Fg
2. For A = (ea : a ∈

Fg
2) ∈ Z2g

≥0, a monomial xA =
∏

a∈Fg
2
xea

a is called admissible if the degree
n =

∑
a∈Fg

2
ea is a multiple of 8 and

∑

a∈Fg
2

eaaS ta ≡ 0 (mod 4)
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for all integral symmetric g×g matrices S. Here ta stands for the transpose
of a. For n = 8, 16, 24, . . . , we define the Eisenstein polynomial of degree
n in genus g by

Eg,n(xa : a ∈ Fg
2) =

∑

A

n/2−dim A−1∏

j=0

(2j + 1)

∏

a∈Fg
2

ea!
xA,

in which the summation is extended over the set of all admissible monomials
xA of degree n. The above definition of the Eisenstein polynomials is formal
and their meaning does not become clear. In order to obtain a better
understanding, we interpret the Eisenstein polynomial from coding theory
as stated in the introduction.

A linear code C of length n is a subspace of Fn
2 . A linear code is called self-

dual if it coincides with its dual with respect to the inner product x · y =∑
xiyi. A linear code is called doubly even if the number of non-zero

coordinates for every element of the code is a multiple of 4. A self-dual and
doubly even code is simply called Type II. It is known that a Type II code
exists if and only if n is a multiple of 8. Two codes are called equivalent
if one coincides with the other after some coordinate permutation. Up to
this equivalence, the Type II codes are classified for n = 8, 16, 24, 32 ([13],
[15], [3], cf. [4]). The class invariant polynomial is given by

Wg,C(xa : a ∈ Fg
2) =

∑

v1,v2,··· ,vg∈C

∏

1≤i≤n

x(v1i,v2i,...,vgi),

which is called the weight enumerator of the code C in genus g. The set of
coordinate permutations that map a code C to itself forms a group, called
the automorphism group of C. We shall denote this group by Aut(C). Let
Mn denote the set of all Type II codes of length n. Then by [17] (cf. [1],
[18]) we have

Eg,n(xa : a ∈ Fg
2) =

1
n!

∑

C∈Mn

Wg,C(xa : a ∈ Fg
2)

=
∑

[C]

1
|Aut(C)|

Wg,C(xa : a ∈ Fg
2),

in which the summation of the second line is extended over the set of all
classes [C] of Type II codes of length n. Hence the polynomial Eg,n(xa : a ∈
Fg

2) is called ‘Eisenstein polynomial’. We refer to [20] for the original case
of this identity (cf. [21], [19]). By [10], the cardinality of Mn is known to
be

∏n/2−2
j=0 (2j + 1). Multiplying n!/|Mn|, we get the normalized Eisenstein
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polynomial

E∗
g,n(xa : a ∈ Fg

2) =
n!

|Mn|
Eg,n(xa : a ∈ Fg

2)

=
∑

a∈Fg
2

xn
a + · · · .

We refer to [9], [14], [6] for the general theory of codes. See also [11] in
which the Eisenstein polynomial plays an important role.

3. Ring generated by Eisenstein polynomials. Before restricting
ourselves to the case g = 2, we observe that E(g) = W(g) holds if and only
if g = 1. In fact, the two algebraically independent Eisenstein polynomials
E1,8 and E1,24 generate W(1). As we shall see later, the two rings do not
coincide for g = 2. In the case g ≥ 3, the dimension of the vector space
of spanned by the weight enumerators of Type II codes of length 24 is at
least 5 by [16](see also [17], [11]), whereas there are only 3 products of
Eisenstein polynomials of degree 24. Therefore the two rings in question do
not coincide.

In the rest of this note, we assume that g = 2 (and may omit g = 2 for
simplicity). We refer to [5], [17], [12] for the invariant theory of this section.

We shall denote by E, W the ring generated over C by Eisenstein poly-
nomials, the ring generated over C by weight enumerators of Type II codes,
respectively. The ring E is a subring of W. We shall denote by Ew, Ww

the homogeneous part of degree w of E, W, respectively. The ring W can
be generated by the five elements of degrees 8, 24, 24, 32, 40 and has the
dimension formula

∑

w≥0

(dimWw) tw =
1 + t32

(1 − t8)(1 − t24)2(1 − t40)

= 1 + t8 + t16 + 3t24 + 4t32 + 5t40 + 8t48 + 10t56

+ 12t64 + 17t72 + 21t80 + 24t88 + 31t96 + 37t104

+ 42t112 + 52t120 + 60t128 + 67t136 + 80t144 + 91t152

+ 101t160 + 117t168 + · · · .

Now, we shall start investigating the graded ring E of Eisenstein poly-
nomials. By direct calculations with Magma [2], the dimensions of Ew for
w = 24, 32, . . . , 80 are

2, 3, 4, 6, 8, 11, 15, 20

and we have that Ew = Ww for w = 0, 8, 16, 88, 96, . . . , 168. In the course of
this calculation, we know that none of the Eisenstein polynomials of degrees

8, 24, 32, 40, 48, 56, 64, 72, 80, 96
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is redundant to generate the ring E. For w = 176, 184, . . ., we can foresee
that Ew = Ww. Actually this is the case. The proof is as follows.

We denote by Ẽ a subring of E generated by the above ten Eisenstein
polynomials. We observe that the ring W can be generated by the elements

E8, E24, Wg24 , E32, E40,

in which g24 denotes the extended Golay code of length 24. Because of
W 4

g24
∈ Ẽ, we know that W is an Ẽ-module generated by 1, Wg24 , W 2

g24
, W 3

g24
,

i.e.,
W = Ẽ + ẼWg24 + ẼW 2

g24
+ ẼW 3

g24
.

We shall show that every element of Ẽ+ ẼWg24 + ẼW 2
g24

+ ẼW 3
g24

for degree
at least 88 is an element of Ẽ. As before, we shall denote by Ẽw the homoge-
neous part of degree w of Ẽ. Note that we have already that Ẽw = Ew = Ww

for w = 88, 96, . . . , 168.

It is enough to consider monomials

ϕ = Ea
8Eb

24E
c
32E

d
40E

e
48E

f
56E

g
64E

h
72E

i
80E

j
96W

k
g24

, for k = 1, 2, 3

and we shall show that each monomial of degree ≥ 88 is contained in Ẽ.
For each k = 1, 2, 3 we argue1 by induction and assume that ϕ is a minimal
counterexample of degree n ≥ 88. Then n ≥ 176 since Ẽw = Ww for w =
88, . . . , 168 by calculation. Either ϕ = E`F for some Eisenstein polynomial
E` of degree ` = 8, 24, . . . , 80 or ϕ = Ej

96W
k
g24

. In the first case the degree
of F is

n − ` ≥ n − 80 ≥ 176 − 80 = 96 > 88

hence by minimality of ϕ we have F ∈ Ẽ and then also ϕ ∈ Ẽ. In the second
case ϕ = Ej−1

96 F has a factor F = E96W
k
g24

of degree

88 < 96 + 24k ≤ 96 + 72 = 168

which lies in Ẽ, hence also ϕ ∈ Ẽ.

By what we have proved, we get Ẽw = Ew = Ww for any w ≥ 88. We
have thus obtained the following

Theorem. The graded ring generated over C by Eisenstein polynomials
in genus 2 is minimally generated over C by the ten Eisenstein polynomials
of degrees

8, 24, 32, 40, 48, 56, 64, 72, 80, 96.
1The following argument was suggested by the referee. The author’s original contained

extra computations.
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For w = 24, 32, . . . , 80, the vector space Ew is strictly smaller than the vector
space Ww and the dimensions of these Ew’s are

2, 3, 4, 6, 8, 11, 15, 20.

For w = 0, 8, 16 and w ≥ 88, the vector space Ew coincides with the vector
space Ww.
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[20] Siegel, C.L., Über die analytische Theorie der quadratischen Formen,
Ann. Math. (2) 36, 527-606 (1935).

[21] Witt, E., Eine Identität zwischen Modulformen zweiten Grades, Abh.
math. Sem. Hansische Univ. 14, 323-337 (1941).

6


