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Abstract

Erokhin showed that the Siegel theta series associated with the even unimodular
32-dimensional extremal lattices of degree up to 3 is unique. Later Salvati Manni
showed that the difference of the Siegel theta series of degree 4 associated with the two
even unimodular 32-dimensional extremal lattices is a constant multiple of the square
J2 of the Schottky modular form J , which is a Siegel cusp form of degree 4 and weight
8. In the present paper we show that the Fourier coefficients of the Siegel theta series
associated with the even unimodular 32-dimensional extremal lattices of degrees 2 and
3 can be computed explicitly, and the Fourier coefficients of the Siegel theta series of
degree 4 for those lattices are computed almost explicitly.
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1 Introduction

In [8] Erokhin showed, among the several results, that the Siegel theta series associated
with the even unimodular 32-dimensional extremal lattices of degree up to 3 is unique. Much
later Salvati Manni [30] showed that the difference of the Siegel theta series of degree 4
associated with two even unimodular 32-dimensional extremal lattices is a constant multiple
of the square J2 of the Schottky modular form J , which is a Siegel cusp form of degree 4 and
weight 8. We remark that Salvati Manni implies Erokhin, since Siegel’s Φ operator sends
Siegel theta series of higher degree to theta series of lower degree, and Φ sends cusp forms
to zero.

In the present paper we first show that (possibly all) the Fourier coefficients of the Siegel
theta series associated with any even unimodular 32-dimensional extremal lattice of degrees
2 and 3 can be computed explicitly, and next we will show that the Siegel theta series of
degree 4 associated with an even unimodular 32-dimensional extremal lattices is a linear
combination of two explicitly computable Siegel modular forms of degree 4 and weight 16.
One is J2 and another is a pan theta series (we name it) PΘ4(Z), which is obtained from
the Siegel theta series associated with any one of even unimodular 32-dimensional extremal
lattices and J2. PΘ4(Z) is showed to be independent of the choice of such a lattice L32.
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Our present report is intermediate in the degree 4 case. The reason for this is that we have
not determined the Fourier coefficients of Θ4(Z,L32) explicitly. However we could show that
the Fourier coefficients of Θ4(Z,L32) can be made explicit in the sense that if one specified
Fourier coefficient of Θ4(Z,L32) is obtained then all the Fourier coefficients are in principle
computable. One may note that the results in the present paper are free from constructions
for the extremal lattices, while the number of non-isometric 32-dimensional even unimodular
extremal lattices is at least one billion (King [15], Cor. 17).

Our basic tool in the present paper is to use the relations among the inner products of
the vectors in the even unimodular 32-dimensional extremal lattice. Those relations were
founded by Schöneberg [34] and first used by Hecke [10] and later B. Venkov (e.g. [39],
[40], [41]) extensively used them to derive many interesting results. We remark that the
central idea of the present paper is closely connected with that of [25]. However the starting
period of the present work is much earlier than that of [25]. The delay of the completion
of the present work compared to that of [25] is caused by the paucity of the conditions in
32-dimensional even unimodular extremal lattices, which forced us to appeal to the compu-
tations in coding theory.

In the coming article [21] we will compute one particular Fourier coefficient which covers
the defect of the present paper. Thus our present result has made a little progress for the
problem posed by Salvati Manni [30].

Acknowledgment: The authors thank Professor R. Salvati Manni for helpful com-
ments. The authors also thank the referee of the present article for giving them some critical
comments which spur them to improve some parts of the article largely.

2 Some Basic Definitions

2.1 Some definitions from lattice theory

Let Z be the ring of rational integers and R be the field of real numbers. A finitely gener-
ated Z-module L in Rg with a positive definite metric is called a positive definite quadratic
lattice. Since we treat only the positive definite quadratic lattices, we shall omit the adjec-
tives “positive definite quadratic”. A lattice L is integral if L satisfies (x,y) ∈ Z for any
x,y ∈ L where ( , ) is the bilinear form associated to the metric. Two integral lattices L1

and L2 are said to be isometric if and only if there exists a bijective linear mapping from L1

to L2 preserving the metric. The maximal number of linearly independent vectors over R in
L is called the rank of L. The dual lattice L# of L is defined by

L# = {y ∈ L⊗Z Q | (x,y) ∈ Z,∀x ∈ L}.

Here Q is the field of rational numbers. A lattice L is even if any element x of L has an even
norm (x,x). In an even lattice L, we say that x is a 2m-vector if (x,x) = 2m holds for some
natural number m. Let Λ2m(L) be the set defined by

(2.1) Λ2m(L) = {x ∈ L | (x,x) = 2m}.

A lattice L is called unimodular if L = L#. Even unimodular lattices exist only when n ≡ 0
(mod 8). The minimal norm of a lattice is Min(L) = minx∈L\{0}(x,x). When L is even
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unimodular of rank n it holds that (conf. [17])

Min(L) ≤ 2
[ n

24

]
+ 2.

Such a lattice which attains the above maximum is said to be extremal.
In the present paper we are particularly interested in any even unimodular extremal

32-dimensional lattice. We denote any one of such lattices as L32. We have Min(L32) = 4.

2.2 Theta series of one complex variable associated with the even
unimodular lattice

Let L be an even unimodular lattice of rank 8k, then the (ordinary) theta series for L is
defined by

(2.2) ϑ(z, L) =
∑
x∈L

exp(πi(x,x)z),

where z is a complex variable with positive imaginary part. This series is rewritten as

(2.3) ϑ(z, L) =
∞∑
m=0

a(2m,L) exp(2πimz),

where a(2m,L) = |Λ2m(L)|.

When we consider the lattice L32, then the Fourier expansion of ϑ(z,L32) is given by

ϑ(z,L32) = 1 + 146880e(2z) + 64757760e(3z) + 4844836800e(4z) + · · · ,

where e(z) is the abbreviation of exp(2πiz).

With the theory of modular forms Venkov [40] obtained

Proposition 2.1. Let L32 be an even unimodular extremal 32-dimensional lattice, Λ4 =
Λ4(L32) and α ∈ L32

⊗
R, then we have

(2.4)
∑
x∈Λ4

(x,α)2 = 18360 · (α,α),

(2.5)
∑
x∈Λ4

(x,α)4 = 6480 · (α,α)2,

(2.6)
∑
x∈Λ4

(x,α)6 = 3600 · (α,α)3,

(2.7)
∑
x∈Λ4

(x,α)10 − 15 · (α,α)

4

∑
x∈Λ4

(x,α)8 = −7560 · (α,α)5.
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In the same sort of effort we can prove

Proposition 2.2. Let L32 be an even unimodular extremal 32-dimensional lattice and Λ6 =
Λ6(L32), then we have ∑

x∈Λ6

(x,α)2 = 12142080 · (α,α),∑
x∈Λ6

(x,α)4 = 6428160 · (α,α)2,∑
x∈Λ6

(x,α)6 = 5356800 · (α,α)3,

∑
x∈Λ6

(x,α)10 − 45 · (α,α)

8

∑
x∈Λ6

(x,α)8 = −25310880 · (α,α)5.

2.3 Siegel theta series

The Siegel theta series of degree g (g ≥ 2) attached to the lattice L is defined by

Θg(Z,L) =
∑

x1,...,xg∈L

exp(πiσ([x1, . . . ,xg]Z)),

where Z is the variable on the Siegel upper-half space of degree g, [x1, . . . ,xg] is a g by g
square matrix whose (i, j) entry is (xi,xj) and σ is the trace of the matrix.

The Siegel theta series of degree g can be expanded to

Θg(Z,L) =
∑

T∈P̂s
g (Z)

a(T, L)e2πiσ(TZ).

Here P̂sg (Z) is the set of positive semi-definite semi-integral symmetric square matrices of
degree g, and a(T, L) = |{〈x1, . . . ,xg〉 ∈ Lg | [x1, . . . ,xg] = 2T}|.

Fact: A Siegel theta series of degree g associated with an even unimodular lattice L of rank
2k (2k is a multiple of 8) is a modular form of degree g and weight k.

2.4 Fourier Coefficients of Siegel Theta series of degree 2 associ-
ated with L32

We compute some Fourier coefficients of Siegel theta series of degree 2 for L32. We give
a simple lemma.

Lemma 2.3. For any two vectors x,y ∈ Λ4(L32) it holds that

(x,y) =


±4,
±2,
±1,
0.
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Proof. By the Schwartzian inequality:

(x,y)2 ≤ (x,x) · (y,y) = 16,

we have
|(x,y)| ≤ 4.

Suppose (x,y) = ±3, then we have (x∓ y,x∓ y) = 2. This is impossible because L32 does
not contain any vector of norm 2.

In the equations (2.4)∼(2.7) we take any one vector α ∈ Λ4(L32), and we put

λa = |{x ∈ Λ4| (x,α) = a}|.

By Lemma 2.3 a must be one of ±4,±2,±1, 0. Note that λ4 = λ−4 = 1 and λa = λ−a holds
for a = 2, 1. By putting these quantities into the equation (2.4) we get

(2.8) 2 · 4λ2 + 2 · λ1 + 2 · 42 = 18360 · 4.

In the same way from (2.5) we get

(2.9) 2 · 24λ2 + 2 · λ1 + 2 · 44 = 6480 · 42.

We can solve the equations (2.8) and (2.9), and the solution is λ2 = 1240, λ1 = 31744. By
the setting of λa’s 2λ4 + 2λ2 + 2λ1 + λ0 counts all members of the set Λ4 non-overlappingly,
hence we have

2λ4 + 2λ2 + 2λ1 + λ0 = |Λ4| = 146880,

and λ0 = 80910. The remaining equations (2.6) and (2.7) are redundant for solving λ2 and
λ1. As a summary we have

Proposition 2.4. For any one of elements α ∈ Λ4(L32) there are (i) 80910 elements x ∈
Λ4(L32) with (x,α) = 0, (ii) 31744 elements x ∈ Λ4(L32) with (x,α) = 1, (iii) 1240 elements
x ∈ Λ4(L32) with (x,α) = 2. Consequently we have

a(T20,L32) = 146880 · 80910, a(T21,L32) = 146880 · 31744, a(T22,L32) = 146880 · 1240,

where

(2.10) T20 =

(
2 0
0 2

)
,T21 =

(
2 1/2

1/2 2

)
,T22 =

(
2 1
1 2

)
.

We express binary symmetric matrix T =

(
t11 t12/2
t12/2 t22

)
as (t11, t22, t12) to save the

space. dT is the determinant of the binary matrix 2T .

Table 3. Fourier coefficients of Siegel-theta series of degree 2 for the lattice L32

dT T a(T,L32)
∗12 (2,2,2) 182131200
15 (2,2,1) 4662558720
∗16 (2,2,0) 11884060800
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In the above table and the tables afterwards concerning the Fourier coefficients the dis-
criminants dT marked by ∗ indicate that the quaternary quadratic forms have imprimitive
coefficients.

Remark 1. There are similar formulas to those given in Propositions 2.1,2.2 using Λk (k =
8, 10, · · · ) instead of using Λ4 or Λ6, and these formulas will serve for computing the Fourier
coefficients of Siegel theta series of degrees up to 3 for extremal even unimodular 32-dimensional
lattices. However when the index T is reduced and has the mixed diagonal entries such as
2, 2, 3, then the computations of the Fourier coefficients would be more complicated.

3 Siegel theta series of degree 3

3.1 Positive Definite Quadratic Forms

We do not intend to discuss the full definitions of quadratic forms, but we need some
definitions of quadratic forms for the later parts of the present paper. From here we will
frequently need to discuss one arithmetical property of the positive definite integral quadratic
forms. Let T be a symmetric square matrix of size g written by

T =


t11 t12/2 · · · t1g/2
t12/2 t22 · · · t2g/2

...
...

...
...

t1g/2 t2g/2 · · · tgg

 ,

then associated with it a quadratic form QT [ξ] is defined by

QT [ξ] = QT [ξ1, · · · , ξg] =
∑

1≤i≤j≤g

tijξiξj,

where ξ1, · · · , ξg are real independent variables. Let GLg(Z) be the group of all unimodular

square matrices of size g. Two quadratic forms QT1 [ξ] =
∑

1≤i≤j≤g t
(1)
ij ξiξj and QT2 [ξ] =∑

1≤i≤j≤g t
(2)
ij ξiξj are said to be integrally equivalent if there is an element U ∈ GLg(Z) such

that the equality U tT1U = T2 holds, where U t is the transposed of the matrix U . A quadratic
form QT [ξ] with real entries tij is said to be positive semi-definite if it satisfies the condition
that QT [ξ] ≥ 0 for any set of real numbers ξ1, · · · , ξg, and the form QT [ξ] is called positive
definite if it satisfies the condition: QT [ξ] > 0 for any set of real numbers ξ1, · · · , ξg, where
at least one of them is not zero. When QT [ξ] is positive definite the matrix T is also called
positive definite. Let Pg(R) be the set of positive definite symmetric matrices whose entries
are real numbers.

The Minkowski reduction theory of positive definite symmetric real matrices treats the
conditions by which one can find all representatives of matrices of equivalence classes. For
the precise conditions on the reduction one may consult the references [18], [37] or [42].

An element T ∈ Pg(R) is called semi-integral if the diagonal entries of T are all integers
and the off-diagonal entries are integers or half-integers. If T is a semi-integral then the
associated quadratic form QT [ξ] =

∑
1≤i≤j≤g tijξiξj has integer coefficients, and QT [ξ] takes

integer value whenever ξ1, · · · , ξg are all integers. When T is a semi-integral and positive
definite the discriminant dT of QT [ξ] is defined by

dT =

{
det(2T ) if g is even,

1
2

det(2T ) if g is odd.
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We denote by Psg (Z) the subset of Pg(R) consisting of semi-integral matrices. We will use the
table of the reduced elements in Psg (Z) with g = 3, 4, 5. Thanks to N.J.A. Sloane’s home page
we can utilize the tables of the reduced quadratic forms of sizes 3 and 4 [1], [19]. One may
note that in these tables mostly primitive forms are recorded. Here the quadratic form is
called primitive if the coefficients tii, 2tij(i 6= j) are coprime integers, and the forms without
this condition are called imprimitive.

We add one unusual terminology. A positive definite semi-integral quadratic form (or
matrix) QT [ξ] =

∑
1≤i≤j≤g tijξiξj is called 2-special if QT [ξ] satisfies the following property:

when T is reduced then the diagonal entries of the obtained form are all 2. We give instances
of 2-special quadratic forms. Viewing the table [19] we find that

2(ξ2
1 + ξ2

2 + ξ2
3 + ξ2

4) + ξ1ξ2 + ξ1ξ3 + ξ2ξ3 + 2ξ1ξ4 + 2ξ2ξ4 − ξ3ξ4

is a reduced primitive form of discriminant 81. This is verified to be the 2-special primitive
form with the least discriminant. However there are only two imprimitive 2-special forms
with smaller discriminants. The form

2(ξ2
1 + ξ2

2 + ξ2
3 + ξ2

4) + 2ξ1ξ4 + 2ξ2ξ4 + 2ξ3ξ4

is a 2-special imprimitive form of discriminant 64, and the form

2(ξ2
1 + ξ2

2 + ξ2
3 + ξ2

4) + 2ξ1ξ2 + 2ξ1ξ4 + 2ξ3ξ4

is a 2-special imprimitive form of discriminant 80. These forms are obtained from primitive
forms of discriminant 4 (resp. 5) by multiplying each coefficient by 2.

There are two general questions, namely, when we are given a positive definite quadratic
form with integer coefficients (i) how we know the minimal value represented by the quadratic
form, and (ii) how we know that the form is 2-special. One nice (but not complete) tool for
these questions is the theta series of one variable. Suppose T is in Psg (Z), then the theta
series for QT [ξ] is defined by

ϑ(z,QT ) =
∑

ξ1,··· ,ξg∈Z
exp(πiz(

∑
1≤i≤j≤g

tijξiξj)),

with the variable z ∈ H1. To answer the first question above one may compute the theta
series of the form in question and see the beginning terms of the expansion. To answer
the second question one computes the discriminant of the form and then compute the theta
series of the form. After these we compute the theta series of the reduced forms of the same
discriminant with the form in question, and compare the theta series of them. The following
results, which are due to A. Schiemann, are suitable for our purpose.

Proposition 3.1 (Schiemann,[33]). Two ternary positive definite forms with real coefficients
are integrally equivalent if and only if their theta series in one variable are equal.

Proposition 3.2 (Schiemann,[32]). Except one pair of forms two positive definite quaternary
even integral quadratic forms with the same discriminant ≤ 3000 are integrally equivalent if
and only if their theta series of one variable equal.
The only exceptional pair of forms is given at the discriminant 1729.
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In the study of Siegel theta series the knowledge about the reduction theory of positive
definite semi-integral quadratic forms is indispensable. In this section we briefly described
the basic definitions of quadratic forms and the references. However one may remark that
in the tables [1], [19] quadratic forms (matrices T ) with imprimitive coefficients are mostly
omitted, but the Fourier coefficients with such T ’s carry important informations. In our
small tables we include the values of imprimitive T ’s.

3.2 Some General Notations

Before going to specific cases we introduce some general notations. Let T be a positive
semi-definite semi-integral matrix of size s. Let a1, · · · , as be s integers, and we denote by
(T, {a1/2, · · · , as/2}, 2) the matrix of size s+ 1 defined by T

a1/2
...

as/2
a1/2 · · · as/2 2

 .

For instance (T, {a/2, b/2}, 2) denotes the matrix t11 t12/2 a/2
t12/2 t22 b/2
a/2 b/2 2

 ,

where

T =

(
t11 t12/2
t12/2 t22

)
.

For an s-tuple x1, · · · ,xs ∈ Λ4 satisfying [x1, · · · ,xs] = 2T we will use a subset of Λ4 defined
by

Λa1,··· ,as(2T; x1, · · · ,xs) = {z ∈ Λ4|(xi, z) = ai, i = 1, · · · , s},

and
λa1,··· ,as(2T; x1, · · · ,xs) = |Λa1,··· ,as(2T; x1, · · · ,xs)|.

With these notations we can describe the Fourier coefficient at (T, {a1/2, · · · , as/2}, 2) by

(3.1) a((T, {a1/2, · · · , as/2}, 2),L) =
∑

x1,··· ,xs∈Λ4

[x1,··· ,xs]=2T

λa1,··· ,as(2T; x1, · · · ,xs).

We are going to calculate the Fourier coefficients a(T,L) of Siegel theta series of various
degrees and some T ’s. Before doing this we recall a property of a(T,L) and an important
assumption which enables us to compute a(T,L).

Proposition 3.3. The Fourier coefficient a(T,L) has the invariance property:

(3.2) a(T,L) = a(U tTU,L),

where U is any unimodular matrix of the same size with that of T . (Conf.[36] formula (48)).
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Modulo Theta Assumption(MTA): From here we may assume that the equality

λa1,··· ,as(2T; x1, · · · ,xs) = λb1,··· ,bs(2T; y1, · · · ,ys)

holds. Here [x1, · · · ,xs] = [y1, · · · ,ys] = 2T and two matrices, (T, {a1/2, · · · , as/2}, 2) and
(T, {b1/2, · · · , bs/2}, 2), are equivalent and both 2-special.

Remark 2. It may occur that λa1,··· ,as(2T; x1, · · · ,xs) 6= λb1,··· ,bs(2T; y1, · · · ,ys) for some
special cases. However in calculating Fourier coefficients a(T,L) one may assume the As-
sumption because of (3.2).

3.3 Ternary Matrices Arising from T22

We use the matrices (2.10) again.
First we seek all possible pairs of integers a, b under the conditions:

(i) (T22, {a/2, b/2}, 2) is positive semi-definite,
(ii) when (T22, {a/2, b/2}, 2) is reduced under unimodular transformations: U t(T22, {a/2, b/2}, 2)U ,
the minimal value of the non-zero diagonal entries of the resulting matrix is 2.

Remark 3. When (T22, {a/2, b/2}, 2) is positive definite and satisfies the condition (ii),
then the matrix is 2-special in the sense that is introduced in Section 3.1. If we confine
ourselves to the case when (T22, {a/2, b/2}, 2) are positive definite only, then we can not use
the equations (2.4)∼(2.7) in the later arguments, since the equations include the terms that
imply (T22, {a/2, b/2}, 2) are not positive definite.

Besides this there are the cases when (T22, {a/2, b/2}, 2) satisfies the condition (i) above
but does not satisfy (ii). It is legitimate to eliminate such cases by proving two lemmas below.

Lemma 3.4. Let T be a positive definite symmetric semi-integral 2-special matrix of size
s (≥ 2). Let (T, {a1/2, · · · , as/2}, 2) be an enlarged matrix made from T by adding half the
integers a1/2, · · · , as/2. If (T, {a1/2, · · · , as/2}, 2) is positive definite and not 2-special, then
there do not exist x1, · · · ,xs+1 ∈ L so that the equation

(3.3) [x1, · · · ,xs+1] = 2(T, {a1/2, · · · , as/2}, 2)

holds.

Proof. Suppose that there are vectors x1, · · · ,xs+1 ∈ Λ4 such that the equation (3.3) holds.
We remark that the Minkowski reduction process does not raise the value of the diagonal
elements (c.f. [37],[42]). Therefore the only possibility for that (T, {a1/2, · · · , as/2}, 2) is not
2-special is as follows. After the reduction the reduced matrix U t(T, {a1/2, · · · , as/2}, 2)U
contains 1 for its diagonal elements. This implies that the lattice L contains the vector
y1, · · · ,ys+1 satisfying [y1, · · · ,ys+1] = U t(T, {a1/2, · · · , as/2}, 2)U , and consequently L
contains a vector of norm 2. This contradicts to the extremality of L.

Lemma 3.5. Suppose that (T, {a1/2, · · · , as/2}, 2) satisfies the same assumption as in Lemma
3.4, then

λa1,··· ,as(2T; x1, · · · ,xs) = 0.

where [x1, · · · ,xs] = 2T,x1, · · · ,xs ∈ Λ4 holds.

Proof. This is an immediate consequence of Lemma 3.4.
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The pairs of integers 〈a, b〉 satisfying the conditions (i), (ii) are grouped into the sets
according to the determinant of 2(T22, {a/2, b/2}, 2) and the equivalence by the unimodu-
lar transformations. In the ternary quadratic forms det(2(T22, {a/2, b/2}, 2))/2 is called the
discriminant of the matrix T = (T22, {a/2, b/2}, 2) (c.f. Section 3.1). We denote it by d. We
write Cd(T22, 〈a, b〉) to denote the set of ordered pairs 〈a′ , b′〉 such that det(2(T22, {a/2, b/2}, 2))/2 =
det(2(T22, {a

′
/2, b

′
/2}, 2))/2 = d and (T22, {a/2, b/2}, 2) is equivalent to (T22, {a

′
/2, b

′
/2}, 2).

The total sets thus defined are called admissible sets with respect to T22.
Later we will consider all possible pairs of integers a, b under the conditions (i) and (ii),

but this time T22 is replaced by T21 or T20. And we will consider admissible sets with respect
to T21 or T20.

We set, for a fixed pair x,y ∈ Λ4 satisfying (x,y) = 2,

λa,b(2T22; x,y) = |{z ∈ Λ4|(x, z) = a, (y, z) = b}|.

The assumption (MTA) in this case implies the following.

Let 〈a1, b1〉 and 〈a2, b2〉 belong to the same set Cd(T22, 〈a, b〉), then it holds that

(3.4) λa1,b1(2T22; x,y) = λa2,b2(2T22; x,y).

We find that C24(T22, 〈0, 0〉) = {〈0, 0〉} and

C22(T22, 〈1, 0〉) = {〈1, 0〉, 〈1, 1〉, 〈0, 1〉, 〈−1, 0〉, 〈−1,−1〉, 〈0,−1〉},
C18(T22, 〈2, 1〉) = {〈2, 1〉, 〈1,−1〉, 〈1, 2〉, 〈−1, 1〉, 〈−1,−2〉, 〈−2,−1〉},
C16(T22, 〈2, 0〉) = {〈2, 0〉, 〈2, 2〉, 〈0, 2〉, 〈0,−2〉, 〈−2, 0〉, 〈−2,−2〉},
C0(T22, 〈2,−2〉) = {〈2,−2〉, 〈−2, 2〉, 〈4, 2〉, 〈−4,−2〉, 〈2, 4〉, 〈−2, 4〉}

exhaust all possible admissible sets. Let 〈a, b〉 be an element of one of the above admissi-
ble sets and λa,b(2T22; x,y) be as above. We take α = ux + vy, where u and v are real
independent variables, then we see that for z ∈ Λ4

(z,α) = au+ bv,

holds for some a, b. One may note that λa,b(2T22; x,y) = 1 for each ordered pair 〈a, b〉 ∈
C0(2,−2) and that (α,α) = 4u2 + 4uv + 4v2. The relation (2.4) in our present case implies
that (λa,b = λa,b(2T22; x,y) for short)
(3.5)
λ1,0{(1u+ 0v)2 + ((−1)u+ 0v)2 + (0u+ 1v)2 + (0u+ (−1)v)2 + (1u+ 1v)2 + ((−1)u+ (−1)v)2}
+λ2,1{(2u+ 1v)2 + ((−2)u+ (−1)v)2 + (1u+ 2v)2 + ((−1)u+ (−2)v)2

+(1u+ (−1)v)2 + ((−1)u+ 1v)2}
+λ2,0{(2u+ 0v)2 + ((−2)u+ 0v)2 + (2u+ 2v)2 + ((−2)u+ (−2)v)2 + (0u+ 2v)2 + (0u+ (−2)v)2}
+{(2u− 2v)2 + (−2u+ 2v)2 + (4u+ 2v)2 + ((−4)u+ (−2)v)2 + (2u+ 4v)2 + ((−2)u+ (−4)v)2)}
= 18360(4u2 + 4uv + 4v2).

Since this equation is an identity for the polynomials in u, v, we must have an equation in
the coefficients such as

(3.6) 4λ1,0 + 12λ2,1 + 16λ2,0 = 73392.
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From the relation (2.5) we have
(3.7)
λ1,0{(1u+ 0v)4 + ((−1)u+ 0v)4 + (0u+ 1v)4 + (0u+ (−1)v)4 + (1u+ 1v)4 + ((−1)u+ (−1)v)4}
+λ2,1{(2u+ 1v)4 + ((−2)u+ (−1)v)4 + (1u+ 2v)4 + ((−1)u+ (−2)v)4

+(1u+ (−1)v)4 + ((−1)u+ 1v)4}
+λ2,0{(2u+ 0v)4 + ((−2)u+ 0v)4 + (2u+ 2v)4 + ((−2)u+ (−2)v)4 + (0u+ 2v)4 + (0u+ (−2)v)4}
+{(2u− 2v)4 + (−2u+ 2v)4 + (4u+ 2v)4 + ((−4)u+ (−2)v)4 + (2u+ 4v)4 + ((−2)u+ (−4)v)4)}
= 6480(4u2 + 4uv + 4v2)2.

By this condition we have

(3.8) 4λ1,0 + 36λ2,1 + 64λ2,0 = 103104.

We have two other equations, but they give no new condition. Likewise from the relation
(2.6) we get

(3.9) 4λ1,0 + 132λ2,1 + 256λ2,0 = 221952.

The linear equations (3.5), (3.8), (3.9) are enough to solve for λ1,0, λ2,1, λ2,0. We find that

λ1,0 = 14976, λ2,1 = 896, λ2,0 = 171.

We observe that the sum

λ0,0 +
∑

〈a,b〉∈C22(1,0)

λa,b +
∑

〈a,b〉∈C18(2,1)

λa,b +
∑

〈a,b〉∈C16(2,0)

λa,b +
∑

〈a,b〉∈C0(2,−2)

λa,b

must equal to the cardinality of Λ4 = 146880, and consequently we have λ0,0 = 50616.

3.4 A Justification of MTA in Degree 3 Case

Here we justify a weakened form of (MTA) for a special case.
Again we use λa,b(2T22; x,y) for all elements 〈a, b〉 of the above admissible sets.

Then by using the equation (2.4) we have
(3.10) ∑
〈a,b〉∈C22(T22,〈1,0〉)

λa,b(2T22; x1,x2)(au+ bv)2 +
∑

〈a,b〉∈C18(T22,〈2,1〉)

λa,b(2T22; x1,x2)(au+ bv)2

+
∑

〈a,b〉∈C16(T22,〈2,0〉)

λa,b(2T22; x1,x2)(au+ bv)2 +
∑

〈a,b〉∈C0(T22,〈2,2〉)

λa,b(2T22; x1,x2)(au+ bv)2


= 18360(4u2 + 4uv + 4v2).

This equation is a precise rewriting of Equation (3.5). From Equation (3.10) we have
(3.11)∑

[x1,x2]=2T22
x1,x2∈Λ4

 ∑
〈a,b〉∈C22(T22,〈1,0〉)

λa,b(2T22; x1,x2)(au+ bv)2 +
∑

〈a,b〉∈C18(T22,〈2,1〉)

λa,b(2T22; x1,x2)(au+ bv)2

+
∑

〈a,b〉∈C16(T22,〈2,0〉)

λa,b(2T22; x1,x2)(au+ bv)2 +
∑

〈a,b〉∈C0(T22,〈2,2〉)

λa,b(2T22; x1,x2)(au+ bv)2


=
∑

[x1,x2]=2T22
x1,x2∈Λ4

18360(4u2 + 4uv + 4v2).
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From Equations (3.1) and (3.2) we have∑
x1,x2∈Λ4

[x1,x2]=2T22

λa1,b1(2T22; x1,x2) = a((T22, {a1/2, b1/2}, 2),L)

= a((T22, {a2/2, b2/2}, 2),L) =
∑

x1,x2∈Λ4
[x1,x2]=2T22

λa2,b2(2T22; x1,x2),

for any two pairs 〈a1, b1〉, 〈a2, b2〉 ∈ C22(T22, 〈1, 0〉) (resp. C18(T22, 〈2, 1〉),C16(T22, 〈2, 0〉)).
From these equalities we have that∑

[x1,x2]=2T22
x1,x2∈Λ4

∑
〈a,b〉∈C22(T22,〈1,0〉) λa,b(2T22; x1,x2)(au+ bv)2

=
∑

[x1,x2]=2T22
x1,x2∈Λ4

λ1,0(2T22; x1,x2)
∑
〈a,b〉∈C22(T22,〈1,0〉)(au+ bv)2,∑

[x1,x2]=2T22
x1,x2∈Λ4

∑
〈a,b〉∈C18(T22,〈2,1〉) λa,b(2T22; x1,x2)(au+ bv)2

=
∑

[x1,x2]=2T22
x1,x2∈Λ4

λ2,1(2T22; x1,x2)
∑
〈a,b〉∈C18(T22,〈2,1〉)(au+ bv)2,∑

[x1,x2]=2T22
x1,x2∈Λ4

∑
〈a,b〉∈C16(T22,〈2,0〉) λa,b(2T22; x1,x2)(au+ bv)2

=
∑

[x1,x2]=2T22
x1,x2∈Λ4

λ2,0(2T22; x1,x2)
∑
〈a,b〉∈C22(T22,〈2,0〉)(au+ bv)2.

With the above equations, we may rewrite Equation (3.11) as∑
[x1,x2]=2T22
x1,x2∈Λ4

λ1,0(2T22; x1,x2)
∑
〈a,b〉∈C22(T22,〈1,0〉)(au+ bv)2

+
∑

[x1,x2]=2T22
x1,x2∈Λ4

λ2,1(2T22; x1,x2)
∑
〈a,b〉∈C18(T22,〈2,1〉)(au+ bv)2

+
∑

[x1,x2]=2T22
x1,x2∈Λ4

λ2,0(2T22; x1,x2)
∑
〈a,b〉∈C16(T22,〈2,0〉)(au+ bv)2

+
∑

[x1,x2]=2T22
x1,x2∈Λ4

λ2,2(2T22; x1,x2)
∑
〈a,b〉∈C0(T22,〈2,2〉)(au+ bv)2

=
∑

[x1,x2]=2T22
x1,x2∈Λ4

18360(4u2 + 4uv + 4v2),

or

(3.12)

a((T22, {1/2, 0/2}, 2),L)
∑
〈a,b〉∈C22(T22,〈1,0〉)(au+ bv)2

+a((T22, {2/2, 1/2}, 2),L)
∑
〈a,b〉∈C18(T22,〈2,1〉)(au+ bv)2

+a((T22, {2/2, 0/2}, 2),L)
∑
〈a,b〉∈C16(T22,〈2,0〉)(au+ bv)2

+
∑

[x1,x2]=2T22
x1,x2∈Λ4

∑
〈a,b〉∈C0(T22,〈2,2〉)(au+ bv)2

=
∑

[x1,x2]=2T22
x1,x2∈Λ4

18360(4u2 + 4uv + 4v2),

Equation (3.5) can be regarded as a disguised form of Equation (3.12). Equation (3.7) can
be regarded as a disguised form of Equation (3.13) below,

(3.13)

a((T22, {1/2, 0/2}, 2),L)
∑
〈a,b〉∈C22(T22,〈1,0〉)(au+ bv)4

+a((T22, {2/2, 1/2}, 2),L)
∑
〈a,b〉∈C18(T22,〈2,1〉)(au+ bv)4

+a((T22, {2/2, 0/2}, 2),L)
∑
〈a,b〉∈C16(T22,〈2,0〉)(au+ bv)4

+
∑

[x1,x2]=2T22
x1,x2∈Λ4

∑
〈a,b〉∈C0(T22,〈2,2〉)(au+ bv)4

=
∑

[x1,x2]=2T22
x1,x2∈Λ4

6480(4u2 + 4uv + 4v2)2,
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and there is another Equation (3.14):

(3.14)

a((T22, {1/2, 0/2}, 2),L)
∑
〈a,b〉∈C22(T22,〈1,0〉)(au+ bv)6

+a((T22, {2/2, 1/2}, 2),L)
∑
〈a,b〉∈C18(T22,〈2,1〉)(au+ bv)6

+a((T22, {2/2, 0/2}, 2),L)
∑
〈a,b〉∈C16(T22,〈2,0〉)(au+ bv)6

+
∑

[x1,x2]=2T22
x1,x2∈Λ4

∑
〈a,b〉∈C0(T22,〈2,2〉)(au+ bv)6

=
∑

[x1,x2]=2T22
x1,x2∈Λ4

3600(4u2 + 4uv + 4v2)3.

Equation (3.13) is obtained by using (2.5) and Equation (3.14) is obtained from (2.6). Equa-
tions (3.12),(3.13) and (3.14) are enough to determine the Fourier coefficients a((T22, {1/2, 0/2}, 2),L),
a((T22, {2/2, 1/2}, 2),L), a((T22, {2/2, 0/2}, 2),L) explicitly.

3.5 Ternary Matrices Arising from T21

As in the previous subsection we consider all possible pairs of integers 〈a, b〉 satisfying the
conditions (i) and (ii) of the previous Subsubsection, but this time T22 should be replaced
by T21 in the conditions. Cd(T21, 〈a, b〉) has the similar meaning to that of the previous
Subsection.

For a fixed pair x,y ∈ Λ4 satisfying (x,y) = 1, we put

λa,b(2T21; x,y) = |{z ∈ Λ4|(x, z) = a, (y, z) = b}|.
The assumption (MTA) in this case implies the following.

Let 〈a1, b1〉 and 〈a2, b2〉 belong to the same set Cd(T21, a, b), then it holds that

(3.15) λa1,b1(2T21; x,y) = λa2,b2(2T21; x,y).

We find that C30(T21, 〈0, 0〉) = {〈0, 0〉} and

C28(T21, 〈1, 0〉) = {〈1, 0〉, 〈0, 1〉, 〈−1, 0〉, 〈0,−1〉},
C27(T21, 〈1, 1〉) = {〈1, 1〉, 〈−1,−1〉},
C25(T21, 〈1,−1〉) = {〈1,−1〉, 〈−1, 1〉},
C22(T21, 〈2, 1〉) = {〈2, 1〉, 〈2, 0〉, 〈1, 2〉, 〈0, 2〉, 〈−2,−1〉, 〈−2, 0〉, 〈−1,−2〉, 〈0,−2〉},
C18(T21, 〈2, 2〉) = {〈2, 2〉, 〈2,−1〉, 〈1,−2〉, 〈−2,−2〉, 〈−2, 1〉, 〈−1, 2〉},
C0(T21, 〈4, 1〉) = {〈4, 1〉, 〈1, 4〉, 〈−4,−1〉, 〈−1,−4〉}

exhaust all possible admissible sets with respect to T21. Using α = ux+vy with real variables
u, v and noting that (α,α) = 4u2 + 2uv + 4v2, from (2.4) we have

λ1,0{(1x+ 0y)2 + ((−1)x+ 0y)2 + (0x+ 1y)2 + (0x+ (−1)y)2}+
λ1,1{((1x+ 1y)2 + ((−1)x+ (−1)y)2)}+
λ1,−1{(1x+ (−1)y)2 + ((−1)x+ 1y)2}+
λ2,1{(2x+ 1y)2 + ((−2)x+ (−1)y)2 + (2x+ 0y)2 + ((−2)x+ 0y)2

+(1x+ 2y)2 + ((−1)x+ (−2)y)2 + (0x+ 2y)2 + (0x+ (−2)y)2}+
λ2,2{(2x+ 2y)2 + ((−2)x+ (−2)y)2 + (2x+ (−1)y)2 + ((−2)x+ 1y)2

+(1x+ (−2)y)2 + ((−1)x+ 2y)2}+
(4x+ 1y)2 + (1x+ 4y)2 + ((−1)x+ (−4)y)2 + ((−4)x+ (−1)y)2

= 18360(4x2 + 2xy + 4y2).
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This is a polynomial identity with the variables x, y, and by comparing both sides we obtain

(3.16) 2λ1,0 + 2λ1,1 + 2λ1,−1 + 18λ2,1 + 18λ2,2 = 73406,

(3.17) 4λ1,1 − 4λ1,−1 + 16λ2,1 = 36688.

From (2.5) we obtain

λ1,0{(1x+ 0y)4 + ((−1)x+ 0y)4 + (0x+ 1y)4 + (0x+ (−1)y)4}+
λ1,1{((1x+ 1y)4 + ((−1)x+ (−1)y)4)}+
λ1,−1{(1x+ (−1)y)4 + ((−1)x+ 1y)4}+
λ2,1{(2x+ 1y)4 + ((−2)x+ (−1)y)4 + (2x+ 0y)4 + ((−2)x+ 0y)4

+(1x+ 2y)4 + ((−1)x+ (−2)y)4 + (0x+ 2y)4 + (0x+ (−2)y)4}+
λ2,2{(2x+ 2y)4 + ((−2)x+ (−2)y)4 + (2x+ (−1)y)4 + ((−2)x+ 1y)4

+(1x+ (−2)y)4 + ((−1)x+ 2y)4}+
(4x+ 1y)4 + (1x+ 4y)4 + ((−1)x+ (−4)y)4 + ((−4)x+ (−1)y)4

= 6480(4x2 + 2xy + 4y2)2.

By comparing the coefficients we have

(3.18) 2λ1,0 + 2λ1,1 + 2λ1,−1 + 66λ2,1 + 66λ2,2 = 103166,

(3.19) 8λ1,1 − 8λ1,−1 + 80λ2,1 + 48λ2,2 = 103136,

(3.20) 12λ1,1 + 12λ1,−1 + 96λ2,1 + 288λ2,2 = 232896.

From (2.6) we obtain

λ1,0{(1x+ 0y)6 + ((−1)x+ 0y)6 + (0x+ 1y)6 + (0x+ (−1)y)6}+
λ1,1{((1x+ 1y)6 + ((−1)x+ (−1)y)6)}+
λ1,−1{(1x+ (−1)y)6 + ((−1)x+ 1y)6}+
λ2,1{(2x+ 1y)6 + ((−2)x+ (−1)y)6 + (2x+ 0y)6 + ((−2)x+ 0y)6

+(1x+ 2y)6 + ((−1)x+ (−2)y)6 + (0x+ 2y)6 + (0x+ (−2)y)6}+
λ2,2{(2x+ 2y)6 + ((−2)x+ (−2)y)6 + (2x+ (−1)y)6 + ((−2)x+ 1y)6

+(1x+ (−2)y)6 + ((−1)x+ 2y)6}+
(4x+ 1y)6 + (1x+ 4y)6 + ((−1)x+ (−4)y)6 + ((−4)x+ (−1)y)6

= 6480(4x2 + 2xy + 4y2)3.

By comparing the coefficients we have

(3.21) 2λ1,0 + 2λ1,1 + 2λ1,−1 + 258λ2,1 + 258λ2,2 = 222206,

(3.22) 12λ1,1 − 12λ1,−1 + 408λ2,1 + 360λ2,2 = 333264,

(3.23) 30λ1,1 + 30λ1,−1 + 600λ2,1 + 2520λ2,2 = 855840,

(3.24) 40λ1,1 − 40 ∗ λ1,−1 + 640λ2,1 + 1920λ2,2 = 714880.
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Thus we have plenty of linear equations (3.8)∼(3.16) on λ’s. By solving them we find

λ1,0 = λ0,1 = λ−1,0 = λ0,−1 = 17235,
λ1,1 = λ−1,−1 = 10360,
λ1,−1 = λ−1,1 = 3528,
λ2,1 = λ2,0 = λ1,2 = λ0,2 = λ−2,−1 = λ−2,0 = λ−1,−2 = λ0,−2 = 585,
λ2,2 = λ2,−1 = λ1,−2 = λ−2,−2 = λ−2,1 = λ−1,2 = 35.

As to λ0,0 the following relation, whose reason is similar to that in the last part of the
preceding subsection,

λ0,0 +
∑
〈a,b〉∈C28(1,0) λa,b +

∑
〈a,b〉∈C27(1,1) λa,b +

∑
〈a,b〉∈C25(1,−1) λa,b

+
∑
〈a,b〉∈C22(2,1) λa,b +

∑
〈a,b〉∈C18(2,2) λa,b +

∑
〈a,b〉∈C0(4,1) λa,b

must equal to 146880, and we have λ0,0 = 45270.

3.6 Concerning Ternary Matrices Arising from T20

For a fixed pair x,y ∈ Λ4 satisfying (x,y) = 0, we put

λa,b(2T20; x,y) = |{z ∈ Λ4|(x, z) = a, (y, z) = b}|.

As before we use the shortened notation: λa,b = λa,b(2T20; x,y). The set C30(T20, 〈0, 0〉) =
{〈0, 0〉} and the sets

C30(T20, 〈1, 0〉) = {〈1, 0〉, 〈0, 1〉, 〈−1, 0〉, 〈0,−1〉},
C28(T20, 〈1, 1〉) = {〈1, 1〉, 〈1,−1〉, 〈−1,−1〉, 〈−1, 1〉},
C24(T20, 〈2, 0〉) = {〈2, 0〉, 〈0, 2〉, 〈−2, 0〉, 〈0,−2〉},
C22(T20, 〈2, 1〉) = {〈2, 1〉, 〈2,−1〉, 〈1, 2〉, 〈1,−2〉, 〈−2,−1〉, 〈−2, 1〉, 〈−1,−2〉, 〈−1, 2〉},
C16(T20, 〈2, 2〉) = {〈2, 2〉, 〈2,−2〉, 〈−2,−2〉, 〈−2, 2〉},
C0(T20, 〈4, 0〉) = {〈4, 0〉, 〈0, 4〉, 〈−4, 0〉, 〈0,−4〉}

exhaust all possible admissible sets with respect to T20. Using α = ux+vy with real variables
u, v and noting that (α,α) = 4u2 + 4v2, from (2.4) ∼(2.7) we have the relations:

λ0,0 = 43740 + 36λ2,2,
λ1,0 = 17824− 24λ2,2,
λ1,1 = −6720 + 16λ2,2,
λ2,0 = 760 + 6λ2,2,
λ2,1 = 240− 4λ2,2.

We can not determine λ’s more precisely. However we can compute the Fourier coefficients
a(T,L32) of Siegel theta series of degree 3 associated for the indices:

T = (T20, {a/2, b/2}, 2), 〈a, b〉 = 〈0, 0〉, 〈1, 0〉, 〈1, 1〉, 〈2, 0〉, 〈2, 1〉

by other bypasses.
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3.7 A Small Table

Here we give a table of the Fourier coefficients of Siegel theta series of degree 3. The
index T of size 3 is given by the ordered sextuple [t11, t22, t33, t12, t13, t23].

Table 4. Fourier coefficients of Siegel theta series
of degree 3 for the 32-dimensional extremal lattice

D T value
∗16 [2, 2, 2, 0, 2, 2] 31144435200
18 [2, 2, 2,−1, 1, 2] 163189555200
22 [2, 2, 2, 0, 1, 2] 2727596851200
∗24 [2, 2, 2, 0, 0, 2] 9218752819200
25 [2, 2, 2,−1, 1, 1] 16449507164160
27 [2, 2, 2, 1, 1, 1] 48304108339200
28 [2, 2, 2, 0, 1, 1] 80359199539200
30 [2, 2, 2, 0, 0, 1] 211074033254400
∗32 [2, 2, 2, 0, 0, 0] 520930019059200

4 Siegel Theta Series of Degree 4

4.1 A Trial to Compute Fourier Coefficients of Siegel Theta Series
of Degree 4

We name

T30 =

 2 1 1
1 2 1
1 1 2

 , T31 =

 2 1 1
1 2 1/2
1 1/2 2

 .

We use the symbol (T3∗, {a/2, b/2, c/2}, 2) to denote the matrix

(4.1)


t11 t12/2 t13/2 a/2
t12/2 t22 t23/2 b/2
t13/2 t23/2 t33 c/2
a/2 b/2 c/2 2

 ,

where

(4.2) T3∗ =

 t11 t12/2 t13/2
t12/2 t22 t23/2
t13/2 t23/2 t33

 .

4.1.1 Extending T30

Now we seek all ordered triples 〈a, b, c〉 of integers satisfying the two conditions
(1) (T30, {a/2, b/2, c/2}, 2) is positive semi-definite,
(2) when (T30, {a/2, b/2, c/2}, 2) is reduced under unimodular transformations:
U t(T30, {a/2, b/2, c/2}, 2)U , the minimal value of the non-zero diagonal entries of the result-
ing matrix is 2.
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We remark that it is easy to find all possible ordered triples 〈a, b, c〉 satisfying the con-
dition (1) only. To eliminate the triples 〈a, b, c〉 not satisfying the condition (2) we use
the theta series of one complex variable associated with the quadratic form defined by
(T, {a/2, b/2, c/2}, 2). If (T, {a/2, b/2, c/2}, 2) integrally represents 1, then (T30, {a/2, b/2, c/2}, 2)
does not satisfy the condition (2). At this stage we do not know whether two triples
that lead to the quaternary forms with the identical discriminant belong to the same set
(T30, {a/2, b/2, c/2}, 2). We consult the table in [19]. In viewing the table we observe that
in the cases when d = 116, 112, 96, 84 there is a unique reduced quaternary form that has
diagonal entries all 2. The table [19] does not give non-primitive forms. In the cases when
d = 128, 80, 64 there arises a unique non-primitive form by multiplying each coefficient of
the unique reduced form of discriminant d = 8 (resp. d = 5, 4) by 2. We verify that each
member 〈a, b, c〉 ∈ Cd(T30, 〈a, b, c〉) gives rise to an identical reduced form.

Before giving a summary we use a convention: Cd(T30, 〈a, b, c〉) = C
(+)
d (T30, 〈a, b, c〉) ∪

C
(−)
d (T30, 〈a, b, c〉), where C

(−)
d (T30, 〈a, b, c〉) is obtained by

(4.1) C
(−)
d (T30, 〈a, b, c〉) = {〈−a,−b,−c〉 |〈a, b, c〉 ∈ C(+)

d (T30, 〈a, b, c〉)}.

This convention is clarified by the following explicit presentations of C
(+)
d (T30, 〈a, b, c〉)’s.

We summarize our search by concluding that C128(T30, 〈0, 0, 0〉) = {〈0, 0, 0〉} and

C
(+)
116 (T30, 〈1, 1, 1〉) = {〈1, 1, 1〉, 〈0, 0, 1〉, 〈0, 1, 0〉, 〈1, 0, 0〉},

C
(+)
112 (T30, 〈1, 1, 0〉) = {〈1, 1, 0〉, 〈1, 0, 1〉, 〈0, 1, 1〉},

C
(+)
96 (T30, 〈2, 1, 1〉) = {〈2, 1, 1〉, 〈1, 2, 1〉, 〈1, 1, 2〉, 〈1,−1, 0〉, 〈0, 1,−1〉, 〈1, 0,−1〉},

C
(+)
84 (T30, 〈2, 2, 1〉) = {〈2, 2, 1〉, 〈2, 1, 2〉, 〈1, 2, 2〉, 〈2, 1, 0〉, 〈2, 0, 1〉, 〈1, 2, 0〉,

〈1, 0, 2〉, 〈0, 2, 1〉, 〈0, 1, 2〉, 〈1, 1,−1〉, 〈1,−1, 1〉, 〈−1, 1, 1〉},
C

(+)
80 (T30, 〈2, 2, 2〉) = {〈2, 2, 2〉, 〈2, 0, 0〉, 〈0, 2, 0〉, 〈0, 0, 2〉},

C
(+)
64 (T30, 〈2, 2, 0〉) = {〈2, 2, 0〉, 〈2, 0, 2〉, 〈0, 2, 2〉},

C
(+)
0 (T30, 〈4, 2, 2〉) = {〈4, 2, 2〉, 〈2, 4, 2〉, 〈2, 2, 4〉, 〈2, 0,−2〉, 〈2,−2, 0〉, 〈0, 2,−2〉},

exhaust all admissible sets for T30. We put

Λ3
4(2T30) = {(x1,x2,x3) ∈ Λ3

4| [x1,x2,x3] = 2T30}.

For a triple (x1,x2,x3) ∈ Λ3
4(2T30) and for an ordered triple 〈a, b, c〉 in one of the above sets

we put

(4.4) La,b,c(2T30; x1,x2,x3) = {z ∈ Λ4|(x1, z) = a, (x2, z) = b, (x1,x2) = c},

(4.5) λa,b,c(2T30; x1,x2,x3) = |La,b,c(x1,x2,x3)|.

We use the formulas (2.4) ∼ (2.7). We set α = ux1 + vx2 + wx3, where u, v, w are real
independent variables and x1,x2,x3 ∈ Λ4 satisfying [x1,x2,x3] = 2T30. Then it holds that
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(α,α) = 4u2 + 4v2 + 4w2 + 4uv + 4uw + 4vw. The left-hand side of (2.4) is

(4.6)∑
z∈Λ4

(z,α)2

=
∑

〈a,b,c〉∈C116(T30,〈1,1,1〉)

λa,b,c(au+ bv + cw)2 +
∑

〈a,b,c〉∈C112(T30,〈1,1,0〉)

λa,b,c(au+ bv + cw)2

+
∑

〈a,b,c〉∈C96(T30,〈2,1,1〉)

λa,b,c(au+ bv + cw)2 +
∑

〈a,b,c〉∈C84(T30,〈2,2,1〉)

λa,b,c(au+ bv + cw)2

+
∑

〈a,b,c〉∈C80(T30,〈2,2,2〉)

λa,b,c(au+ bv + cw)2 +
∑

〈a,b,c〉∈C64(T30,〈2,2,0〉)

λa,b,c(au+ bv + cw)2

+
∑

〈a,b,c〉∈C0(T30,〈4,2,2〉)

(au+ bv + cw)2

= 2λ1,1,1((u+ v + w)2 + w2 + v2 + u2) + 2λ1,1,0((u+ v)2 + (u+ w)2 + (v + w)2)

+2λ2,1,1((2u+ v + w)2 + (u+ 2v + w)2 + (u+ v + 2w)2)

+2λ2,2,1((2u+ 2v + w)2 + (2u+ v + 2w)2 + (u+ 2v + 2w)2

+(2u+ v)2 + (2u+ w)2 + (u+ 2v)2 + (u+ 2w)2 + (2v + w)2 + (v + 2w)2

+(u+ v − w)2 + (u− v + w)2 + (−u+ v + w)2)

+2λ2,2,2((2u+ 2v + 2w)2 + (2w)2 + (2v)2 + (2u)2)

+2λ2,2,0((2u+ 2v)2 + (2u+ 2w)2 + (2v + 2w)2)

+2((4u+ 2v + 2w)2 + (2u+ 4v + 2w)2 + (2u+ 2v + 4w)2 + (2u− 2v)2 + (2u− 2w)2 + (2v − 2w)2)

= 18360(4u2 + 4v2 + 4w2 + 4uv + 4uw + 4vw) (the right-hand side of (2.4)).

From (2.5) we obtain

2λ1,1,1((u+ v + w)4 + w2 + v2 + u2) + 2λ1,1,0((u+ v)4 + (u+ w)4 + (v + w)4)

+2λ2,1,1((2u+ v + w)4 + (u+ 2v + w)4 + (u+ v + 2w)4)

+2λ2,2,1((2u+ 2v + w)4 + (2u+ v + 2w)4 + (u+ 2v + 2w)4

+(2u+ v)4 + (2u+ w)4 + (u+ 2v)4 + (u+ 2w)4 + (2v + w)4 + (v + 2w)4

+(u+ v − w)4 + (u− v + w)4 + (−u+ v + w)4)

+2λ2,2,2((2u+ 2v + 2w)4 + (2w)4 + (2v)4 + (2u)4)

+2λ2,2,0((2u+ 2v)4 + (2u+ 2w)4 + (2v + 2w)4)

+2((4u+ 2v + 2w)4 + (2u+ 4v + 2w)4 + (2u+ 2v + 4w)4 + (2u− 2v)4 + (2u− 2w)4 + (2v − 2w)4)

= 6480(4u2 + 4v2 + 4w2 + 4uv + 4uw + 4vw)2.
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From (2.6) we obtain

2λ1,1,1((u+ v + w)6 + w2 + v2 + u2) + 2λ1,1,0((u+ v)6 + (u+ w)6 + (v + w)6)

+2λ2,1,1((2u+ v + w)6 + (u+ 2v + w)6 + (u+ v + 2w)6)

+2λ2,2,1((2u+ 2v + w)6 + (2u+ v + 2w)6 + (u+ 2v + 2w)6

+(2u+ v)6 + (2u+ w)6 + (u+ 2v)6 + (u+ 2w)6 + (2v + w)6 + (v + 2w)6

+(u+ v − w)6 + (u− v + w)6 + (−u+ v + w)6)

+2λ2,2,2((2u+ 2v + 2w)6 + (2w)6 + (2v)6 + (2u)6)

+2λ2,2,0((2u+ 2v)6 + (2u+ 2w)6 + (2v + 2w)6)

+2((4u+ 2v + 2w)6 + (2u+ 4v + 2w)6 + (2u+ 2v + 4w)6 + (2u− 2v)6 + (2u− 2w)6 + (2v − 2w)6)

= 3600(4u2 + 4v2 + 4w2 + 4uv + 4uw + 4vw)3.

The above three equations are polynomial identities with the variables u, v, w. By comparing
the coefficients we get many linear equations on λ’s. We can not solve these equation, but
we obtain the following expressions:

(4.7)



λ1,1,1(2T30; x1,x2,x3) = 9312− 10λ2,2,2(2T30; x1,x2,x3),
λ1,1,0(2T30; x1,x2,x3) = 4992 + 8λ2,2,2(2T30; x1,x2,x3),
λ2,1,1(2T30; x1,x2,x3) = 448 + 4λ2,2,2(2T30; x1,x2,x3),
λ2,2,1(2T30; x1,x2,x3) = 224− 2λ2,2,2(2T30; x1,x2,x3),
λ2,2,2(2T30; x1,x2,x3) = λ2,2,2(2T30; x1,x2,x3),
λ2,2,0(2T30; x1,x2,x3) = λ2,2,2(2T30; x1,x2,x3)− 54.

As to the quantity λ0,0,0 we use the following equation:

λ0,0,0 +
∑

〈a,b,c〉∈C116(T30,〈1,1,1〉)

λa,b,c +
∑

〈a,b,c〉∈C112(T30,〈1,1,0〉)

λa,b,c

+
∑

〈a,b,c〉∈C96(T30,〈2,1,1〉)

λa,b,c +
∑

〈a,b,c〉∈C84(T30,〈2,2,1〉)

λa,b,c

+
∑

〈a,b,c〉∈C80(T30,〈2,2,2〉)

λa,b,c +
∑

〈a,b,c〉∈C64(T30,〈2,2,0〉)

λa,b,c

+
∑

〈a,b,c〉∈C0(T30,〈4,2,2〉)

1

= 146880,

which has the quite similar reason as the argument right after the equation (3.7). Conse-
quently we get

λ0,0,0(2T30; x1,x2,x3) = 31992 + 18λ2,2,2(2T30; x1,x2,x3).

We remark that the equation (2.7) does not give any further condition in determining λ’s
more precisely. At best we prove the following

Proposition 4.1. For a 32-dimensional even unimodular extremal lattice L32 we have the
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following Fourier coefficients relations:

(4.8)

a((T30, {0, 0, 0}, 2),L32) = 31992 · 31144435200 + 18 · a((T30, {1, 1, 1}, 2),L32),

a((T30, {1/2, 1/2, 1/2}, 2),L32) = 9312 · 31144435200− 10 · a((T30, {1, 1, 1}, 2),L32),

a((T30, {1/2, 1/2, 0}, 2),L32) = 4992 · 31144435200 + 8 · a((T30, {1, 1, 1}, 2),L32),

a((T30, {1, 1/2, 1/2}, 2),L32) = 448 · 31144435200 + 4 · a((T30, {1, 1, 1}, 2),L32),

a((T30, {1, 1, 1/2}, 2),L32) = 224 · 31144435200− 2 · a((T30, {1, 1, 1}, 2),L32),

a((T30, {1, 1, 0}, 2),L32) = −54 · 31144435200 + a((T30, {1, 1, 1}, 2),L32).

Proof. We specify the formula (3.1) to a((T30, {0, 0, 0}, 2),L32) and we obtain

a((T30, {0, 0, 0}, 2),L32) =
∑

x1,x2,x3∈Λ4

[x1,x2,x3]=2T30

λ0,0,0(2T30; x1,x2,x3)

=
∑

x1,x2,x3∈Λ4

[x1,x2,x3]=2T30

(31992 + 18 · λ2,2,2(2T30; x1,x2,x3))

= 31992 · 31144435200 + 18 · a((T30, {1, 1, 1}, 2),L32).

This proves the first formula of Proposition. Other formulas in the proposition are proved
by using the relations (4.7).

4.1.2 A Brief Justification of MTA in Degree 4 Case

In this section we derive linear constraints on the quantities a((T30, {1, 1, 0}, 2),L32), · · · ,
a((T30, {2, 2, 0}, 2),L32) without appealing to MTA. The resulting conclusion is the same as
that of using MTA. This justifies using of MTA in determining the relations among the
Fourier coefficients.
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Let λa,b,c(2T30; x1,x2,x3) be as before. We begin with the precise writing of (4.6):

(4.9)∑
z∈Λ4

(z,α)2

=
∑

〈a,b,c〉∈C116(T30,〈1,1,1〉)

λa,b,c(2T30; x1,x2,x3)(au+ bv + cw)2

+
∑

〈a,b,c〉∈C112(T30,〈1,1,0〉)

λa,b,c(2T30; x1,x2,x3)(au+ bv + cw)2

+
∑

〈a,b,c〉∈C96(T30,〈2,1,1〉)

λa,b,c(2T30; x1,x2,x3)(au+ bv + cw)2

+
∑

〈a,b,c〉∈C84(T30,〈2,2,1〉)

λa,b,c(2T30; x1,x2,x3)(au+ bv + cw)2

+
∑

〈a,b,c〉∈C80(T30,〈2,2,2〉)

λa,b,c(2T30; x1,x2,x3)(au+ bv + cw)2

+
∑

〈a,b,c〉∈C64(T30,〈2,2,0〉)

λa,b,c(2T30; x1,x2,x3)(au+ bv + cw)2

+
∑

〈a,b,c〉∈C0(T30,〈4,2,2〉)

(au+ bv + cw)2

= 18360(4u2 + 4v2 + 4w2 + 4uv + 4uw + 2vw).
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From (4.9) we have

(4.10)∑
[x1,x2,x3]=2T30
x1,x2,x3∈Λ4

[∑
z∈Λ4

(z,α)2

]

=
∑

[x1,x2,x3]=2T30
x1,x2,x3∈Λ4

 ∑
〈a,b,c〉∈C116(T30,〈1,1,1〉)

λa,b,c(2T30; x1,x2,x3)(au+ bv + cw)2

+
∑

〈a,b,c〉∈C112(T30,〈1,1,0〉)

λa,b,c(2T30; x1,x2,x3)(au+ bv + cw)2

+
∑

〈a,b,c〉∈C96(T30,〈2,1,1〉)

λa,b,c(2T30; x1,x2,x3)(au+ bv + cw)2

+
∑

〈a,b,c〉∈C84(T30,〈2,2,1〉)

λa,b,c(2T30; x1,x2,x3)(au+ bv + cw)2

+
∑

〈a,b,c〉∈C80(T30,〈2,2,2〉)

λa,b,c(2T30; x1,x2,x3)(au+ bv + cw)2

+
∑

〈a,b,c〉∈C64(T30,〈2,2,0〉)

λa,b,c(2T30; x1,x2,x3)(au+ bv + cw)2

+
∑

〈a,b,c〉∈C0(T30,〈4,2,2〉)

(au+ bv + cw)2


=

∑
[x1,x2]=2T22
x1,x2∈Λ4

18360(4u2 + 4v2 + 4w2 + 4uv + 4uw + 2vw).
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The second term in Eq. (4.10) is rewritten as∑
[x1,x2,x3]=2T30
x1,x2,x3∈Λ4

∑
〈a,b,c〉∈C116(T30,〈1,1,1〉)

λa,b,c(2T30; x1,x2,x3)(au+ bv + cw)2

+
∑

[x1,x2,x3]=2T30
x1,x2,x3∈Λ4

∑
〈a,b,c〉∈C112(T30,〈1,1,0〉)

λa,b,c(2T30; x1,x2,x3)(au+ bv + cw)2

+
∑

[x1,x2,x3]=2T30
x1,x2,x3∈Λ4

∑
〈a,b,c〉∈C96(T30,〈2,1,1〉)

λa,b,c(2T30; x1,x2,x3)(au+ bv + cw)2

+
∑

[x1,x2,x3]=2T30
x1,x2,x3∈Λ4

∑
〈a,b,c〉∈C84(T30,〈2,2,1〉)

λa,b,c(2T30; x1,x2,x3)(au+ bv + cw)2

+
∑

[x1,x2,x3]=2T30
x1,x2,x3∈Λ4

∑
〈a,b,c〉∈C80(T30,〈2,2,2〉)

λa,b,c(2T30; x1,x2,x3)(au+ bv + cw)2

+
∑

[x1,x2,x3]=2T30
x1,x2,x3∈Λ4

∑
〈a,b,c〉∈C64(T30,〈2,2,0〉)

λa,b,c(2T30; x1,x2,x3)(au+ bv + cw)2

+
∑

[x1,x2,x3]=2T30
x1,x2,x3∈Λ4

∑
〈a,b,c〉∈C0(T30,〈4,2,2〉)

(au+ bv + cw)2

=
∑

[x1,x2,x3]=2T30
x1,x2,x3∈Λ4

λ1,1,1(2T30; x1,x2,x3)
∑

〈a,b,c〉∈C116(T30,〈1,1,1〉)

(au+ bv + cw)2

+
∑

[x1,x2,x3]=2T30
x1,x2,x3∈Λ4

λ1,1,0(2T30; x1,x2,x3)
∑

〈a,b,c〉∈C112(T30,〈1,1,0〉)

(au+ bv + cw)2

+
∑

[x1,x2,x3]=2T30
x1,x2,x3∈Λ4

λ2,1,1(2T30; x1,x2,x3)
∑

〈a,b,c〉∈C96(T30,〈2,1,1〉)

(au+ bv + cw)2

+
∑

[x1,x2,x3]=2T30
x1,x2,x3∈Λ4

λ2,2,1(2T30; x1,x2,x3)
∑

〈a,b,c〉∈C84(T30,〈2,2,1〉)

(au+ bv + cw)2

+
∑

[x1,x2,x3]=2T30
x1,x2,x3∈Λ4

λ2,2,2(2T30; x1,x2,x3)
∑

〈a,b,c〉∈C80(T30,〈2,2,2〉)

(au+ bv + cw)2

+
∑

[x1,x2,x3]=2T30
x1,x2,x3∈Λ4

λ2,2,0(2T30; x1,x2,x3)
∑

〈a,b,c〉∈C64(T30,〈2,2,0〉)

(au+ bv + cw)2

+
∑

[x1,x2,x3]=2T30
x1,x2,x3∈Λ4

∑
〈a,b,c〉∈C0(T30,〈4,2,2〉)

(au+ bv + cw)2

= a((T30, {1, 1, 1}, 2),L32)
∑

〈a,b,c〉∈C116(T30,〈1,1,1〉)

(au+ bv + cw)2
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+a((T30, {1, 1, 0}, 2),L32)
∑

〈a,b,c〉∈C112(T30,〈1,1,0〉)

(au+ bv + cw)2

+a((T30, {2, 1, 1}, 2),L32)
∑

〈a,b,c〉∈C96(T30,〈2,1,1〉)

(au+ bv + cw)2

+a((T30, {2, 2, 1}, 2),L32)
∑

〈a,b,c〉∈C84(T30,〈2,2,1〉)

(au+ bv + cw)2

+a((T30, {2, 2, 2}, 2),L32)
∑

〈a,b,c〉∈C80(T30,〈2,2,2〉)

(au+ bv + cw)2

+a((T30, {2, 2, 0}, 2),L32)
∑

〈a,b,c〉∈C64(T30,〈2,2,0〉)

(au+ bv + cw)2

+a(T30,L32)
∑

[x1,x2,x3]=2T30
x1,x2,x3∈Λ4

∑
〈a,b,c〉∈C0(T30,〈4,2,2〉)

(au+ bv + cw)2

Concludingly we have

(4.11)

a((T30, {1, 1, 0}, 2),L32)
∑

〈a,b,c〉∈C112(T30,〈1,1,0〉)

(au+ bv + cw)2

+a((T30, {2, 1, 1}, 2),L32)
∑

〈a,b,c〉∈C96(T30,〈2,1,1〉)

(au+ bv + cw)2

+a((T30, {2, 2, 1}, 2),L32)
∑

〈a,b,c〉∈C84(T30,〈2,2,1〉)

(au+ bv + cw)2

+a((T30, {2, 2, 2}, 2),L32)
∑

〈a,b,c〉∈C80(T30,〈2,2,2〉)

(au+ bv + cw)2

+a((T30, {2, 2, 0}, 2),L32)
∑

〈a,b,c〉∈C64(T30,〈2,2,0〉)

(au+ bv + cw)2

+a(T30,L32)
∑

〈a,b,c〉∈C0(T30,〈4,2,2〉)

(au+ bv + cw)2

= a(T30,L32) · 18360(4u2 + 4v2 + 4w2 + 4uv + 4uw + 2vw)
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Likewise by using (2.5) and (2.6) we have

(4.12)

a((T30, {1, 1, 0}, 2),L32)
∑

〈a,b,c〉∈C112(T30,〈1,1,0〉)

(au+ bv + cw)4

+a((T30, {2, 1, 1}, 2),L32)
∑

〈a,b,c〉∈C96(T30,〈2,1,1〉)

(au+ bv + cw)4

+a((T30, {2, 2, 1}, 2),L32)
∑

〈a,b,c〉∈C84(T30,〈2,2,1〉)

(au+ bv + cw)4

+a((T30, {2, 2, 2}, 2),L32)
∑

〈a,b,c〉∈C80(T30,〈2,2,2〉)

(au+ bv + cw)4

+a((T30, {2, 2, 0}, 2),L32)
∑

〈a,b,c〉∈C64(T30,〈2,2,0〉)

(au+ bv + cw)4

+a(T30,L32)
∑

〈a,b,c〉∈C0(T30,〈4,2,2〉)

(au+ bv + cw)4

= a(T30,L32) · 6480(4u2 + 4v2 + 4w2 + 4uv + 4uw + 2vw)2,

and

(4.13)

a((T30, {1, 1, 0}, 2),L32)
∑

〈a,b,c〉∈C112(T30,〈1,1,0〉)

(au+ bv + cw)6

+a((T30, {2, 1, 1}, 2),L32)
∑

〈a,b,c〉∈C96(T30,〈2,1,1〉)

(au+ bv + cw)6

+a((T30, {2, 2, 1}, 2),L32)
∑

〈a,b,c〉∈C84(T30,〈2,2,1〉)

(au+ bv + cw)6

+a((T30, {2, 2, 2}, 2),L32)
∑

〈a,b,c〉∈C80(T30,〈2,2,2〉)

(au+ bv + cw)6

+a((T30, {2, 2, 0}, 2),L32)
∑

〈a,b,c〉∈C64(T30,〈2,2,0〉)

(au+ bv + cw)6

+a(T30,L32)
∑

〈a,b,c〉∈C0(T30,〈4,2,2〉)

(au+ bv + cw)6

= a(T30,L32) · 3600(4u2 + 4v2 + 4w2 + 4uv + 4uw + 2vw)3

Equations (4.11),(4.12) and (4.13) are polynomial identities on the variables u, v, w, and from
them we have linear equations on the quantities a((T30, {1, 1, 0}, 2),L32), · · · , a((T30, {2, 2, 0}, 2),L32)
which enable us to obtain the exact relations among those quantities such as (4.8).

The results of Subsubsection 4.1.3 below can be justified by a similar way to that of the
present subsubsection. Therefore we can avoid the way that passes the formulas (4.15) and
we go directly to Proposition 4.2 without appealing to (MTA).
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4.1.3 Extending T31

When we use T31 The following sets:

C144(T31, 〈0, 0, 0〉) = {〈0, 0, 0〉}
C

(+)
132 (T31, 〈0, 0, 1〉) = {〈0, 0, 1〉, 〈0, 1, 0〉},

C
(+)
129 (T31, 〈1, 1, 1〉) = {〈1, 1, 1, 〉, 〈1, 1, 0, 〉, 〈1, 0, 1, 〉, 〈1, 0, 0, 〉},

C
(+)
120 (T31, 〈0, 1, 1〉) = {〈0, 1, 1, 〉, 〈0, 1,−1〉},

C
(+)
108 (T31, 〈2, 1, 1〉) = {〈2, 1, 1〉},

C
(+)
105 (T31, 〈1, 2, 1〉) = {〈1, 2, 1〉, 〈1, 2, 0〉, 〈1, 1, 2〉, 〈1, 1,−1〉,

〈1, 0, 2〉, 〈1, 0,−1〉, 〈1,−1, 1〉, 〈1,−1, 0〉},
C

(+)
96 (T31, 〈2, 2, 1〉) = {〈2, 2, 1〉, 〈2, 1, 2〉, 〈2, 1, 0〉,

〈2, 0, 1〉, 〈0, 2, 0〉, 〈0, 0, 2〉},
C

(+)
84 (T31, 〈2, 2, 2〉) = {〈2, 2, 2〉, 〈2, 2, 0〉, 〈2, 0, 2〉, 〈2, 0, 0〉,

〈0, 2, 1〉, 〈0, 2,−1〉, 〈0, 1, 2〉, 〈0, 1,−2〉},
C

(+)
81 (T31, 〈1, 2, 2〉) = {〈1, 2, 2〉, 〈1, 2,−1〉, 〈1,−1, 2〉, 〈1,−1,−1〉},

C
(+)
0 (T31, 〈4, 2, 2〉) = {〈4, 2, 2〉, 〈2, 4, 1〉, 〈2, 1, 4〉, 〈2, 1,−2〉, 〈2,−2, 1〉},

exhaust all admissible sets for T31 We set α = ux1 + vx2 + wx3, where u, v, w are real
independent variables and x1,x2,x3 ∈ Λ4 satisfying [x1,x2,x3] = 2T31. Then it holds that
(α,α) = 4u2 + 4v2 + 4w2 + 4uv + 4uw + 2vw. The left-hand side of (2.4) is

(4.14)∑
z∈Λ4

(z,α)2

=
∑

〈a,b,c〉∈C132(T31,〈0,0,1〉)

λa,b,c(au+ bv + cw)2 +
∑

〈a,b,c〉∈C129(T31,〈1,1,1〉)

λa,b,c(au+ bv + cw)2

+
∑

〈a,b,c〉∈C120(T31,〈0,1,1〉)

λa,b,c(au+ bv + cw)2 +
∑

〈a,b,c〉∈C108(T31,〈2,1,1〉)

λa,b,c(au+ bv + cw)2

+
∑

〈a,b,c〉∈C105(T31,〈1,2,1〉)

λa,b,c(au+ bv + cw)2 +
∑

〈a,b,c〉∈C96(T31,〈2,2,1〉)

λa,b,c(au+ bv + cw)2

+
∑

〈a,b,c〉∈C84(T31,〈2,2,2〉)

λa,b,c(au+ bv + cw)2 +
∑

〈a,b,c〉∈C81(T31,〈1,2,2〉)

λa,b,c(au+ bv + cw)2

+
∑

〈a,b,c〉∈C0(T31,〈4,2,2〉)

(au+ bv + cw)2

= 2λ0,0,1(w2 + v2) + 2λ1,1,1((u+ v + w)2 + (u+ v)2 + (u+ w)2 + u2)

2λ0,1,1((v + w)2 + (v − w)2) + 2λ2,1,1(2u+ v + w)2

+2λ1,2,1((u+ 2v + w)2 + (u+ 2v)2 + (u+ v + 2w)2 + (u+ v − w)2 + (u+ 2w)2

+(u− w)2 + (u− v + w)2 + (u− v)2) + 2λ2,2,1((2u+ 2v + w)2 + (2u+ v + 2w)2

+(2u+ v)2 + (2u+ w)2 + (2v)2 + (2w)2) + 2λ2,2,2((2u+ 2v + 2w)2 + (2u+ 2v)2

+(2u+ 2w)2 + (2u)2 + (2v + w)2 + (2v − w)2 + (v + 2w)2 + (v − 2w)2)

+2λ1,2,2((u+ 2v + 2w)2 + (u+ 2v − w)2 + (u− v + 2w)2 + (u− v − w)2

+2((4u+ 2v + 2w)2 + (2u+ 4v + w)2 + (2u+ v + 4w)2 + (2u+ v − 2w)2 + (2u− 2v + w)2)

= 18360(4u2 + 4v2 + 4w2 + 4uv + 4uw + 2vw).
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By using the equation (2.5) we obtain

2λ0,0,1(w4 + v4) + 2λ1,1,1((u+ v + w)4 + (u+ v)4 + (u+ w)4 + u4)

2λ0,1,1((v + w)4 + (v − w)4) + 2λ2,1,1(2u+ v + w)4

+2λ1,2,1((u+ 2v + w)4 + (u+ 2v)4 + (u+ v + 2w)4 + (u+ v − w)4 + (u+ 2w)4

+(u− w)4 + (u− v + w)4 + (u− v)4) + 2λ2,2,1((2u+ 2v + w)4 + (2u+ v + 2w)4

+(2u+ v)4 + (2u+ w)4 + (2v)4 + (2w)4) + 2λ2,2,2((2u+ 2v + 2w)4 + (2u+ 2v)4

+(2u+ 2w)4 + (2u)4 + (2v + w)4 + (2v − w)4 + (v + 2w)4 + (v − 2w)4)

+2λ1,2,2((u+ 2v + 2w)4 + (u+ 2v − w)4 + (u− v + 2w)4 + (u− v − w)4

+2((4u+ 2v + 2w)4 + (2u+ 4v + w)4 + (2u+ v + 4w)4 + (2u+ v − 2w)4 + (2u− 2v + w)4)

= 6480(4u2 + 4v2 + 4w2 + 4uv + 4uw + 2vw)2.

By using the equation (2.6) we obtain

2λ0,0,1(w6 + v6) + 2λ1,1,1((u+ v + w)6 + (u+ v)6 + (u+ w)6 + u6)

2λ0,1,1((v + w)6 + (v − w)6) + 2λ2,1,1(2u+ v + w)6

+2λ1,2,1((u+ 2v + w)6 + (u+ 2v)6 + (u+ v + 2w)6 + (u+ v − w)6 + (u+ 2w)6

+(u− w)6 + (u− v + w)6 + (u− v)6) + 2λ2,2,1((2u+ 2v + w)6 + (2u+ v + 2w)6

+(2u+ v)6 + (2u+ w)6 + (2v)6 + (2w)6) + 2λ2,2,2((2u+ 2v + 2w)6 + (2u+ 2v)6

+(2u+ 2w)6 + (2u)6 + (2v + w)6 + (2v − w)6 + (v + 2w)6 + (v − 2w)6)

+2λ1,2,2((u+ 2v + 2w)6 + (u+ 2v − w)6 + (u− v + 2w)6 + (u− v − w)6

+2((4u+ 2v + 2w)6 + (2u+ 4v + w)6 + (2u+ v + 4w)6 + (2u+ v − 2w)6 + (2u− 2v + w)6)

= 3600(4u2 + 4v2 + 4w2 + 4uv + 4uw + 2vw)3.

Again we get the following expressions:

(4.15)



λ0,0,1(2T31; x1,x2,x3) = 9576 + 2λ2,2,2(2T31; x1,x2,x3),
λ1,1,1(2T31; x1,x2,x3) = 7074− λ2,2,2(2T31; x1,x2,x3),
λ0,1,1(2T31; x1,x2,x3) = 2700− 2λ2,2,2(2T31; x1,x2,x3),
λ2,1,1(2T31; x1,x2,x3) = 552 + 4λ2,2,2(2T31; x1,x2,x3),
λ1,2,1(2T31; x1,x2,x3) = 414 + λ2,2,2(2T31; x1,x2,x3),
λ2,2,1(2T31; x1,x2,x3) = 171− 2λ2,2,2(2T31; x1,x2,x3),
λ2,2,2(2T31; x1,x2,x3) = λ2,2,2(2T31; x1,x2,x3),
λ1,2,2(2T31; x1,x2,x3) = 34− λ2,2,2(2T31; x1,x2,x3).
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As to λ0,0,0(2T31; x1,x2,x3) the following fact, which is analogous to the relation directly
after (4.6), is useful.

λ0,0,0 +
∑

〈a,b,c〉∈C132(T31,〈0,0,1〉)

λa,b,c +
∑

〈a,b,c〉∈C129(T31,〈1,1,1〉)

λa,b,c

+
∑

〈a,b,c〉∈C120(T31,〈0,1,1〉)

λa,b,c +
∑

〈a,b,c〉∈C108(T31,〈2,1,1〉)

λa,b,c

+
∑

〈a,b,c〉∈C105(T31,〈1,2,1〉)

λa,b,c +
∑

〈a,b,c〉∈C96(T31,〈2,2,1〉)

λa,b,c

+
∑

〈a,b,c〉∈C84(T31,〈2,2,2〉)

λa,b,c +
∑

〈a,b,c〉∈C81(T31,〈1,2,2〉)

λa,b,c

+
∑

〈a,b,c〉∈C0(T31,〈4,2,2〉)

= 146880.

From this we have
λ0,0,0(2T31; x1,x2,x3) = 31122.

Proposition 4.2. For a 32-dimensional even unimodular extremal lattice L32 we have the
following Fourier coefficients relations:

(4.16)

a((T31, {0, 0, 0}, 2),L32) = 31122 · 163189555200,

a((T31, {0, 0, 1/2}, 2),L32) = 9576 · 163189555200 + 2 · a((T31, {1, 1, 1}, 2),L32),

a((T31, {1/2, 1/2, 1/2}, 2),L32) = 7074 · 163189555200− a((T31, {1, 1, 1}, 2),L32),

a((T31, {0, 1/2, 1/2}, 2),L32) = 2700 · 163189555200− 2 · a((T31, {1, 1, 1}, 2),L32),

a((T31, {1, 1/2, 1/2}, 2),L32) = 552 · 163189555200 + 4 · a((T31, {1, 1, 1}, 2),L32),

a((T31, {1/2, 1, 1/2}, 2),L32) = 414 · 163189555200 + a((T31, {1, 1, 1}, 2),L32),

a((T31, {1, 1, 1/2}, 2),L32) = 171 · 163189555200− 2 · a((T31, {1, 1, 1}, 2),L32),

a((T31, {1/2, 1/2, 0}, 2),L32) = 34 · 163189555200− a((T31, {1, 1, 1}, 2),L32).

Proof. The proof is very similar to that of Proposition 4.1. This time we have

a((T31, {0, 0, 1/2}, 2),L32) =
∑

x1,x2,x3∈Λ4
[x1,x2,x3]=2T31

λ0,0,1(2T31; x1,x2,x3)

=
∑

x1,x2,x3∈Λ4
[x1,x2,x3]=2T31

(9576 + 2 · λ2,2,2(2T31; x1,x2,x3))

= 9576 · 163189555200 + 2 · a((T31, {1, 1, 1}, 2),L32).

Other equations are derived in the same way.

Remark 4. The sequence 18,−10, 8, 4,−2, 1 which are the coefficients of a((T30, {1, 1, 1}, 2),L32)
in Proposition 4.1, and the sequence 0, 2,−1,−2, 4, 1,−2, 1 which are the coefficients of
a((T31, {1, 1, 1}, 2),L32) in Proposition 4.2 are the Fourier coefficients of the square of Schot-
tky modular form J (up to constant multiple). (See Table 6 in Section 4.4). This means that
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Propositions 4.1 and 4.2 are more concrete realizations of Theorem 4.4 below which is due
to Salvati Manni.

Table 5. A Dictionary of Extended Quadratic Matrices and its Reduced Forms
D representative reduced form
∗64 (T30, {1, 1, 0}, 2) (2,2,2,2,0,0,0,2,2,2)
∗80 (T30, {1, 1, 1}, 2) (2,2,2,2,2,0,0,2,0,2)
81 (T31, {0, 0, 0}, 2) (2,2,2,2,1,1,1,2,2,-1)
84 (T30, {1, 1, 1/2}, 2) (2,2,2,2,1,0,0,2,2,2)
84 (T31, {1, 1, 1}, 2) (2,2,2,2,1,0,0,2,2,2)
96 (T30, {1, 1/2, 1/2}, 2) (2,2,2,2,2,1,-1,0,0,2)
96 (T31, {1, 1/2, 1/2}, 2) (2,2,2,2,2,1,-1,0,0,2)

105 (T31, {1/2, 1, 1/2}, 2) (2,2,2,2,2,1,0,0,1,2)
108 (T31, {0, 0, 0}, 2) (2,2,2,2,2,1,-1,-1,1,-1)
112 (T30, {1/2, 1/2, 0}, 2) (2,2,2,2,2,1,0,2,0,0)
116 (T30, {1/2, 1/2, 1/2}, 2) (2,2,2,2,2,1,0,0,2,0)
120 (T31, {0, 1/2, 1/2}, 2) (2,2,2,2,1,1,1,2,2,0)
121 (2,2,2,2,2,1,0,1,1,2)
125 (2,2,2,2,1,1,-1,-1,1,1)
∗128 (T30, {0, 0, 0}, 2) (2,2,2,2,0,0,0,2,2,0)
128 (2,2,2,2,2,1,0,0,0,2)
129 (T31, {1/2, 1/2, 1/2}, 2) (2,2,2,2,1,1,1,1,2,2)
132 (T31, {0, 0, 1/2}, 2) (2,2,2,2,2,1,-1,0,0,1)

We may merge Propositions 4.1 and 4.2 into the following unified proposition.

Proposition 4.3. We have

a((T31, {0, 0, 0}, 2),L32) = 5078785336934400,

a((T30, {0, 0, 0}, 2),L32) = 31992 · 31144435200 + 18 · a((T30, {1, 1, 1}, 2),L32),

a((T31, {0, 0, 1/2}, 2),L32) = 1576655887564800− 4 · a((T30, {1, 1, 1}, 2),L32),

a((T31, {1/2, 1/2, 1/2}, 2),L32) = 1147426560000000 + 2 · a((T30, {1, 1, 1}, 2),L32),

a((T31, {0, 1/2, 1/2}, 2),L32) = 426659092070400 + 4 · a((T30, {1, 1, 1}, 2),L32),

a((T30, {1/2, 1/2, 1/2}, 2),L32) = 9312 · 31144435200− 10 · a((T30, {1, 1, 1}, 2),L32),

a((T30, {1/2, 1/2, 0}, 2),L32) = 4992 · 31144435200 + 8 · a((T30, {1, 1, 1}, 2),L32),

a((T31, {1, 1/2, 1/2}, 2),L32) = 117986048409600− 8 · a((T30, {1, 1, 1}, 2),L32),

a((T31, {1/2, 1, 1/2}, 2),L32) = 74536829337600− 2 · a((T30, {1, 1, 1}, 2),L32),

a((T30, {1, 1, 1/2}, 2),L32) = 448 · 31144435200 + 4 · a((T30, {1, 1, 1}, 2),L32),

a((T30, {1, 1, 1/2}, 2),L32) = 224 · 31144435200− 2 · a((T30, {1, 1, 1}, 2),L32),

a((T31, {1/2, 1, 1}, 2),L32) = −1427908608000 + 2 · a((T30, {1, 1, 1}, 2),L32),

a((T30, {1, 1, 0}, 2),L32) = −54 · 31144435200 + a((T30, {1, 1, 1}, 2),L32).

Proof. We observe that two matrices (T30, {1, 1, 1/2}, 2) and (T31, {1, 1, 1}, 2) are integrally
equivalent matrices with the common discriminant 84. Therefore by the equality (3.2) we
have

a((T30, {1, 1, 1/2}, 2),L32) = a((T31, {1, 1, 1}, 2),L32).
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By Proposition 4.1 one has

(4.17) a((T31, {1, 1, 1}, 2),L32) = 224 · 31144435200− 2 · a((T30, {1, 1, 1}, 2),L32).

This equation is a link between Proposition 4.1 and Proposition 4.2. The rest of the propo-
sition follows from this link and Proposition 4.2.

Remark 5. Some readers may be aware of the equivalence of two matrices (T30, {1, 1/2, 1/2}, 2)
and (T31, {1, 1, 1/2}, 2) with the common discriminant 96. This equivalence may lead to an-
other equation between a((T30, {1, 1, 1}, 2),L32) and a((T31, {1, 1, 1}, 2),L32). However one
may verify that this condition overlaps with (4.17).

4.2 Pan theta series

As to the range of the values of a(T40,L32) we have an elementary estimate.

Theorem 4.4. Let L32 be any 32-dimensional even unimodular extremal lattice, then it holds
that

169799500800 = 54 · 3144435200 ≤ a(T40,L32) ≤ 112 · 3144435200 = 352176742400.

Proof. By the non-negative of the Fourier coefficients a((T30, {1, 1, 0}, 2),L32), a((T30, {1, 1, 1/2}, 2),L32)
and by Proposition 4.1 we have the inequalities:

a((T30, {1, 1, 1}, 2) ≥ 54 · 31144435200,

and

a((T30, {1, 1, 1}, 2),L32) ≤ 112 · 31144435200.

This implies Theorem.

Salvati Manni [30] Theorem 3 showed

Theorem 4.5 (Salvati Manni). Let us assume N = 32, 48 (the dimensions of the lattices);
then about the theta series associated to extremal lattices we can say

(i) it is unique in degree 3,
(ii) in degree 4 their difference is, up to a multiplicative constant(possibly 0), equal to a power
of Schottky’s polynomial J .

We normalize that the Fourier coefficient of J2 at the index T40 is 1.

Theorem 4.6. Let Θ4(Z,L32) =
∑
T

a(T,L32)e2πiσ(TZ) be the Fourier expansion of Siegel

theta series of degree 4 for any even unimodular extremal 32-dimensional lattice L32.
(1) Θ4(Z,L32) is uniquely determined by the value of the Fourier coefficient at the index

T40 = (T30, {1, 1, 1}, 2).
(2) The series defined by

PΘ4(Z) = Θ4(Z,L32)− a(T40,L32)J2

is a Siegel modular form of degree 4 and weight 16, and independent of the choice of extremal
lattice L32.
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Proof. (1) follows from (2). The latter part of (2) can be obtained from Salvati Manni’s
Theorem. Indeed, that Theorem says the equality

Θ4(Z,L(1)
32 )−Θ4(Z,L(2)

32 ) = cJ2

holds for certain constant c. We compare the both sides of the above equation at the index
T40 in their Fourier expansions. The left hand equals (a(T40,L(1)

32 )−a(T40,L(2)
32 )) whereas the

right hand equals c. This implies that

Θ4(Z,L(1)
32 )−Θ4(Z,L(2)

32 ) = (a(T40,L(1)
32 )− a(T40,L(2)

32 ))J2,

or
Θ4(Z,L(1)

32 )− a(T40,L(1)
32 )J2 = Θ4(Z,L(2)

32 )− a(T40,L(2)
32 )J2.

for any two 32-dimensional even unimodular extremal lattices L(1)
32 ,L

(2)
32 .

We call PΘ4(Z) a pan theta series.

Remark 6. At present we have only one method to compute the Fourier coefficients of
pan theta series PΘ4(Z), namely the method to compute them step by step using Hecke-
Schöneberg equations along the line in obtaining Propositions 4.1 and 4.2. If we could find a
means to approach this series from a different way, it may be nice.

Here we give a table of the Fourier coefficients of pan theta series.

Table 6. Table of the Fourier coefficients of pan theta series
D reduced form PΘ4(Z)
∗64 (2,2,2,2,0,0,0,2,2,2) -1681799500800
∗80 (2,2,2,2,2,0,0,2,0,2) 0
81 (2,2,2,2,1,1,1,2,2,-1) -1427908608000
84 (2,2,2,2,1,0,0,2,2,2) 6976353484800
96 (2,2,2,2,2,1,-1,0,0,2) 13952706969600

105 (2,2,2,2,2,1,0,0,1,2) 74536829337600
108 (2,2,2,2,2,1,-1,-1,1,-1) 117986048409600
112 (2,2,2,2,2,1,0,2,0,0) 155473020518400
116 (2,2,2,2,2,1,0,0,2,0) 290016980582400
120 (2,2,2,2,1,1,1,2,2,0) 426659092070400
121 (2,2,2,2,2,1,0,1,1,2) 449738757734400
125 (2,2,2,2,1,1,-1,-1,1,1) 737143539793920
∗128 (2,2,2,2,0,0,0,2,2,0) 996372770918400
128 (2,2,2,2,2,1,0,0,0,2) 1064392217395200
129 (2,2,2,2,1,1,1,1,2,2) 1147426560000000
132 (2,2,2,2,2,1,-1,0,0,1) 1576655887564800

4.3 A Very Small Table of the Fourier Coefficients of the Square
of Schottky Modular Form

The Schottky modular form J is a unique Siegel cusp form of degree 4 and weight 8.
At present we have some methods to compute the Fourier coefficients of J . For instance
we pick up two Siegel series of degree 4 associated with root lattices of type E8 ⊕ E8 and
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D16. Then the difference of these two series is a constant multiple of the Schottky modular
form J (c.f. [12], [13]). Beside this we have a method to get Siegel theta series of degree 4
from the quadriweight enumerator of doubly even self-dual codes of types e8 ⊕ e8 and d16

(c.f. [5]). Kawamura [14] has computed the Fourier coefficients of many Siegel cusp forms
of various weights, including Schottky modular form, using the Ikeda lift. From the Fourier
coefficients of J we can compute the Fourier coefficients of the square J2. We give these as
the following table.

Table 7.
Fourier coefficients of the square of Schottky modular form J .

D reduced form J2

∗64 (2,2,2,2,0,0,0,2,2,2) 1
∗80 (2,2,2,2,2,0,0,2,0,2) 1
81 (2,2,2,2,1,1,1,2,2,-1) 2
84 (2,2,2,2,1,0,0,2,2,2) -2
96 (2,2,2,2,2,1,-1,0,0,2) 4

105 (2,2,2,2,2,1,0,0,1,2) -2
108 (2,2,2,2,2,1,-1,-1,1,-1) -8
112 (2,2,2,2,2,1,0,2,0,0) 8
116 (2,2,2,2,2,1,0,0,2,0) -10
120 (2,2,2,2,1,1,1,2,2,0) 4
121 (2,2,2,2,2,1,0,1,1,2) 20
125 (2,2,2,2,1,1,-1,-1,1,1) 12
∗128 (2,2,2,2,0,0,0,2,2,0) 18
128 (2,2,2,2,2,1,0,0,0,2) -16
129 (2,2,2,2,1,1,1,1,2,2) 2
132 (2,2,2,2,2,1,-1,0,0,1) -4
140 (2,2,2,2,1,1,-1,0,0,2) 8
∗144 (2,2,2,2,2,0,0,0,0,2) 66
144 (2,2,2,2,2,1,-1,0,0,0) 0
145 (2,2,2,2,2,1,0,-1,-1,1) -10
153 (2,2,2,2,1,1,0,1,1,2) -54
156 (2,2,2,2,1,1,1,2,0,0) 48
160 (2,2,2,2,1,1,-1,1,-1,0) -16

D reduced form J2

160 (2,2,2,2,1,1,0,2,0,0) -44
161 (2,2,2,2,2,1,0,0,1,0) 46
164 (2,2,2,2,1,0,0,1,0,2) 52
165 (2,2,2,2,1,1,-1,-1,-1,1) -4
176 (2,2,2,2,1,0,0,0,2,0) -72
180 (2,2,2,2,1,1,1,-1,1,0) 0
180 (2,2,2,2,1,0,0,0,0,2) -228
185 (2,2,2,2,1,1,0,1,0,-1) 28
189 (2,2,2,2,1,1,1,1,1,1) -244
∗192 (2,2,2,2,0,0,0,2,0,0) 324
192 (2,2,2,2,1,1,1,1,1,0) 208
192 (2,2,2,2,1,1,0,0,1,1) 104
196 (2,2,2,2,1,1,0,0,1,-1) 264
200 (2,2,2,2,1,1,-1,0,0,0) -72
201 (2,2,2,2,1,1,1,0,1,0) -156
208 (2,2,2,2,1,1,0,1,0,0) 80
209 (2,2,2,2,1,1,0,0,1,0) -304
216 (2,2,2,2,1,1,1,0,0,0) 216
224 (2,2,2,2,1,1,0,0,0,0) 504
225 (2,2,2,2,1,0,0,0,0,1) 1092
240 (2,2,2,2,1,0,0,0,0,0) -1728
∗256 (2,2,2,2,0,0,0,0,0,0) 4104

The reduced quadratic matrices of size 4 which is expressed in the form (4.1) are displayed
as t11, t22, t33, t44, t12, t13, t23, a = t14, b = t24, c = t34.
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[34] B. Schöneberg, Das Verhalten von mehrfachen Thetareihen bei Modulsubstitutionen.
Math. Ann. 116 (1939) 511-523
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