SOME GRADED RINGS COMING FROM CODING THEORY¹

By Manabu Oura²

I will give an elementary example of an infinitely generated graded ring motivated by coding theory.

1. A linear code C of length n means a subspace of \mathbf{F}_2^n . C is called self-dual if it coincides with its dual code

$$C^{\perp} = \{ x \in C | x \cdot y = \sum_{i} x_{i} y_{i} = 0, \ \forall y \in C \}.$$

The number wt(x) of non-zero coordinates of $x \in \mathbf{F}_2^n$ is called the weight of x. We say that C is doubly-even if the weight of x is congruent to 0 (mod 4) for all $x \in C$.

Examples of self-dual doubly-even codes are the [8, 4, 4] extended Hamming code e_8 and the [24, 12, 8] extended Golay code g_{24} .

For a linear code C of length n, a homogeneous polynomial W_C of degree³ n defined by

$$W_C = W_C(x, y) = \sum_{v \in C} x^{n - wt(v)} y^{wt(v)}$$

is called the weight enumerator of C. We can show the identities

$$\begin{split} W_{C\oplus D} &= W_C W_D,\\ W_{C^\perp}(x,y) &= \frac{1}{|C|} W_C(x+y,x-y), \end{split}$$

where \oplus denotes the direct sum of codes and |*| the cardinality of *. The second identity is called the MacWilliams identity.

Examples of the weight enumerators are

$$W_{e_8} = x^8 + 14x^4y^4 + y^8,$$

$$W_{g_{24}} = x^{24} + 759x^{16}y^8 + 2576x^{12}y^{12} + 759x^8y^{16} + y^{24}.$$

¹Talk at the conference "Algebraic Geometry, Number Theory, Coding Theory and Cryptography", Tokyo, January 18, 2003.

 $^{^2}$ This work is supported in part by KAKENHI (No.14740081).

³Throughout this note, we assume that each degree of x and y is 1, thus the degree of x^iy^j is i+j.

Let \mathfrak{W} be the graded ring generated by the weight enumerators of all self-dual doubly-even codes of any length. We shall quickly describe the structure of \mathfrak{W} . Let C be a self-dual doubly-even code. Because of the self-duality, the MacWilliams identity gives the invariance property of the weight enumerators:

$$W_C(\frac{x+y}{\sqrt{2}}, \frac{x-y}{\sqrt{2}}) = W_C(x, y).$$

The doubly-evenness, that is, $wt(v) \equiv 0 \pmod{4}$ for any $v \in C$, gives the following:

$$W_C(x, iy) = W_C(x, y).$$

From these two identities, we can read off that, for each self-dual doublyeven code C, the weight enumerator W_C is invariant under the action of the group

$$G = \left\langle \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \right\rangle.$$

Here the action we are assuming is a natural one:

$$\sigma \cdot f(x,y) = f(ax + by, cx + dy)$$

for $f \in \mathbf{C}[x,y]$, $\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G$. We note that G is a finite irreducible unitary reflection group of order 192. If we denote the invariant ring of G by $\mathbf{C}[x,y]^G$, we have

$$\mathbf{C}[W_{e_8}, W_{g_{24}}] \subset \mathfrak{W} \subset \mathbf{C}[x, y]^G.$$
 (1)

If we denote by $(\mathbf{C}[x,y]^G)_d$ the homogeneous polynomials of degree d in the invariant ring, then $(\mathbf{C}[x,y]^G)_d$ is a finite dimensional **C**-vector space and each dimension $\dim(\mathbf{C}[x,y]^G)_d$ can be read off from the formula

$$\sum_{d\geq 0} \left(\dim(\mathbf{C}[x,y]^G)_d \right) t^d = \frac{1}{|G|} \sum_{\sigma \in G} \frac{1}{\det(1-t\sigma)}$$

$$= \frac{1}{(1-t^8)(1-t^{24})}$$

$$= 1+t^8+t^{16}+2t^{24}+2t^{32}+2t^{40}+3t^{48}+\cdots$$

Since the two elements W_{e_8} , $W_{g_{24}}$ are algebraically independent, we know that the ring $\mathbf{C}[W_{e_8}, W_{g_{24}}]$ coincides with the invariant ring. Therefore the equality of the three graded rings in (1) holds. This is the structure theorem of \mathfrak{W} (Gleason 1970).

2. We define another homogeneous polynomials coming from codes. Let C be a binary code of length n. For r = 0, 1, we define the r-th higher weight enumerator of the code C by

$$H_C^{(0)} = H_C^{(0)}(x, y) = x^n,$$

 $H_C^{(1)} = H_C^{(1)}(x, y) = W_C - H_C^{(0)} = W_C - x^n,$

where n denotes the length of C. These higher weight enumerators are homogeneous of degree n. We have

$$H_{C \oplus D}^{(1)} = W_{C \oplus D} - x^{n_1 + n_2}$$

$$= W_C W_D - x^{n_1 + n_2}$$

$$= (H_C^{(1)} + x^{n_1})(H_D^{(1)} + x^{n_2}) - x^{n_1 + n_2},$$

where n_1 , n_2 denote the lengths of the codes C, D, respectively. In particular, for a code C of length n, we have

$$2x^n H_C^{(1)} = H_{C \oplus C}^{(1)} - (H_C^{(1)})^2.$$
 (2)

For details, we refer to our paper "Higher Weights and Graded Rings for Binary Self-Dual Codes" by S. T. Dougherty, A. Gulliver, M. Oura and its references.

Examples of the $H_C^{(1)}$'s are

$$H_{e_8}^{(1)} = 14x^4y^4 + y^8,$$

 $H_{g_{24}}^{(1)} = 759x^{16}y^8 + 2576x^{12}y^{12} + 759x^8y^{16} + y^{24}.$

As in the case of the weight enumerators, we consider the graded rings of the higher weight enumerators. We recall that a self-dual doubly-even code of length n exists if and only if $n \equiv 0 \pmod{8}$. Using this fact, the graded ring generated by $H_C^{(0)}$ of all self-dual doubly-even codes C is just $\mathbf{C}[x^8]$. Let \mathfrak{H} (resp. $\widetilde{\mathfrak{H}}$) be the graded ring generated by the $H_C^{(0)}$'s and

the $H_C^{(1)}$'s (resp. the $H_C^{(1)}$'s) of all self-dual doubly-even codes C of any length.

3. The graded ring \mathfrak{H} is a free $\mathbb{C}[x^8, H_{e_8}^{(1)}]$ -module with the basis 1, $H_{g_{24}}^{(1)}$, which is stated in our paper cited above. We shall sketch a proof of this fact. Let C be any self-dual doubly-even code of length n. The weight enumerator W_C can be written in the form $P(W_{e_8}, W_{g_{24}})$ for some polynomial P(X,Y). This is a consequence of the structure theorem of \mathfrak{W} . Therefore we have

$$H_C^{(1)} = W_C - x^n$$

$$= P(W_{e_8}, W_{g_{24}}) - x^n$$

$$= P(H_{e_8}^{(1)} + x^8, H_{g_{24}}^{(1)} + x^{24}) - x^n$$

and this gives $\mathfrak{H} \subset \mathbf{C}[x^8, H_{e_8}^{(1)}, H_{g_{24}}^{(1)}]$, thus $\mathfrak{H} = \mathbf{C}[x^8, H_{e_8}^{(1)}, H_{g_{24}}^{(1)}]$. The computations show that we have

$$\mathfrak{H} = \mathbf{C}[x^8, H_{e_8}^{(1)}] \oplus \mathbf{C}[x^8, H_{e_8}^{(1)}] H_{g_{24}}^{(1)},$$

where \oplus denotes the direct sum as modules.

4. The graded rings considered so far in this note are finitely generated. In this section, we will show that $\widetilde{\mathfrak{H}}$ is infinitely generated.

If

$$f = a_n x^n + a_{n-1} x^{n-1} y + \dots + a_0 y^n,$$

$$a_n = \dots = a_{\ell-1} = 0, \ a_{\ell} \neq 0,$$

then we write $w(f) = \ell$. We put $w(0) = \infty$. For any code C, we have $w(H_C^{(1)}) < n$, where n denotes the length of C. This fact will be used below.

Preparing this, we shall show that $\widetilde{\mathfrak{H}}$ is infinitely generated. Assume that $\widetilde{\mathfrak{H}}$ is finitely generated: $\widetilde{\mathfrak{H}} = \mathbf{C}[H_{C_1}^{(1)}, \ldots, H_{C_k}^{(1)}]$. For any positive integer d, we denote by $\widetilde{\mathfrak{H}}^{(d)}$ the subring of $\widetilde{\mathfrak{H}}$ generated by all elements of $\widetilde{\mathfrak{H}}$ whose degrees are multiples of d. The degrees of the generators of $\widetilde{\mathfrak{H}}$ may be different, however, some subring of $\widetilde{\mathfrak{H}}$ is able to be generated by the elements whose degrees are the same. More precisely there exists a positive integer r such that $\widetilde{\mathfrak{H}}^{(r)}$ can be generated by the F_1, \ldots, F_m

whose degrees (as homogeneous polynomials in $\mathbf{C}[x,y]$) are r (cf. J. Igusa, "Theta Functions", Springer-Verlag, p.89 Lemma 3). Here we may take each F_i as a monomial of $H_{C_1}^{(1)}, \ldots, H_{C_k}^{(1)}$. Moreover we assume $w(F_1) \leq w(F_2) \leq \cdots \leq w(F_m)$. We remark that $w(F_m) < r$ because of the fact stated after the definition of w(*). By the formula (2), $x^r F_m$ belongs to $\widetilde{\mathfrak{H}}^{(r)}$ and can be written in the form

$$x^r F_m = \sum (\text{const.}) F_i F_j.$$

But this is impossible because of $w(x^rF_m) = r + w(F_m) > w(F_iF_j)$ for any i, j. Hence $\widetilde{\mathfrak{H}}$ is infinitely generated.

DIVISION OF MATHEMATICS
SCHOOL OF MEDICINE
SAPPORO MEDICAL UNIVERSITY