SOME GRADED RINGS COMING FROM CODING THEORY1

By MANABU OURA2

I will give an elementary example of an infinitely generated graded ring motivated by coding theory.

1. A linear code C of length n means a subspace of \mathbb{F}_2^n. C is called self-dual if it coincides with its dual code

$$C^\perp = \{ x \in C | x \cdot y = \sum_i x_i y_i = 0, \forall y \in C \}.$$

The number $\text{wt}(x)$ of non-zero coordinates of $x \in \mathbb{F}_2^n$ is called the weight of x. We say that C is doubly-even if the weight of x is congruent to 0 (mod 4) for all $x \in C$.

Examples of self-dual doubly-even codes are the [8, 4, 4] extended Hamming code e_8 and the [24, 12, 8] extended Golay code g_{24}.

For a linear code C of length n, a homogeneous polynomial W_C of degree3 n defined by

$$W_C = W_C(x, y) = \sum_{v \in C} x^{n-\text{wt}(v)} y^{\text{wt}(v)}$$

is called the weight enumerator of C. We can show the identities

$$W_{C \oplus D} = W_C W_D,$$

$$W_{C^\perp}(x, y) = \frac{1}{|C|} W_C(x + y, x - y),$$

where \oplus denotes the direct sum of codes and $| * |$ the cardinality of $*$. The second identity is called the MacWilliams identity.

Examples of the weight enumerators are

$$W_{e_8} = x^8 + 14x^4 y^4 + y^8,$$

$$W_{g_{24}} = x^{24} + 759x^{16} y^8 + 2576x^{12} y^{12} + 759x^8 y^{16} + y^{24}.$$

1Talk at the conference “Algebraic Geometry, Number Theory, Coding Theory and Cryptography”, Tokyo, January 18, 2003.

2This work is supported in part by KAKENHI (No.14740081).

3Throughout this note, we assume that each degree of x and y is 1, thus the degree of $x^i y^j$ is $i + j$.

1
Let \(\mathfrak{W} \) be the graded ring generated by the weight enumerators of all self-dual doubly-even codes of any length. We shall quickly describe the structure of \(\mathfrak{W} \). Let \(C \) be a self-dual doubly-even code. Because of the self-duality, the MacWilliams identity gives the invariance property of the weight enumerators:

\[
W_C\left(\frac{x + y}{\sqrt{2}}, \frac{x - y}{\sqrt{2}}\right) = W_C(x, y).
\]

The doubly-evenness, that is, \(wt(v) \equiv 0 \pmod{4} \) for any \(v \in C \), gives the following:

\[
W_C(x, iy) = W_C(x, y).
\]

From these two identities, we can read off that, for each self-dual doubly-even code \(C \), the weight enumerator \(W_C \) is invariant under the action of the group

\[
G = \left\langle \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & i \end{pmatrix} \right\rangle.
\]

Here the action we are assuming is a natural one:

\[
\sigma \cdot f(x, y) = f(ax + by, cx + dy)
\]

for \(f \in \mathbb{C}[x, y] \), \(\sigma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in G \). We note that \(G \) is a finite irreducible unitary reflection group of order 192. If we denote the invariant ring of \(G \) by \(\mathbb{C}[x, y]^G \), we have

\[
\mathbb{C}[W_{e_8}, W_{g_{24}}] \subset \mathfrak{W} \subset \mathbb{C}[x, y]^G.
\] \hfill (1)

If we denote by \((\mathbb{C}[x, y]^G)_d \) the homogeneous polynomials of degree \(d \) in the invariant ring, then \((\mathbb{C}[x, y]^G)_d \) is a finite dimensional \(\mathbb{C} \)-vector space and each dimension \(\dim(\mathbb{C}[x, y]^G)_d \) can be read off from the formula

\[
\sum_{d \geq 0} (\dim(\mathbb{C}[x, y]^G)_d) t^d = \frac{1}{|G|} \sum_{\sigma \in G} \frac{1}{\det(1 - t \sigma)}
\]

\[
= \frac{1}{(1 - t^8)(1 - t^{24})}
\]

\[
= 1 + t^8 + t^{16} + 2t^{24} + 2t^{32} + 2t^{40} + 3t^{48} + \cdots.
\]
Since the two elements W_{e_8}, $W_{g_{24}}$ are algebraically independent, we know that the ring $\mathbb{C}[W_{e_8}, W_{g_{24}}]$ coincides with the invariant ring. Therefore the equality of the three graded rings in (1) holds. This is the structure theorem of \mathcal{W} (Gleason 1970).

2. We define another homogeneous polynomials coming from codes. Let C be a binary code of length n. For $r = 0, 1$, we define the r-th higher weight enumerator of the code C by

\[
H_C^{(0)} = H_C^{(0)}(x, y) = x^n,
\]

\[
H_C^{(1)} = H_C^{(1)}(x, y) = W_C - H_C^{(0)} = W_C - x^n,
\]

where n denotes the length of C. These higher weight enumerators are homogeneous of degree n. We have

\[
H_{C \oplus D}^{(1)} = W_C \oplus D - x^{n_1 + n_2} = W_C W_D - x^{n_1 + n_2} = (H_C^{(1)} + x^{n_1})(H_D^{(1)} + x^{n_2}) - x^{n_1 + n_2},
\]

where n_1, n_2 denote the lengths of the codes C, D, respectively. In particular, for a code C of length n, we have

\[
2x^n H_C^{(1)} = H_{C \oplus C}^{(1)} - (H_C^{(1)})^2.
\]

For details, we refer to our paper “Higher Weights and Graded Rings for Binary Self-Dual Codes” by S. T. Dougherty, A. Gulliver, M. Oura and its references.

Examples of the $H_C^{(1)}$s are

\[
H_{e_8}^{(1)} = 14x^4y^4 + y^8,
\]

\[
H_{g_{24}}^{(1)} = 759x^8y^8 + 2576x^{12}y^{12} + 759x^8y^{16} + y^{24}.
\]

As in the case of the weight enumerators, we consider the graded rings of the higher weight enumerators. We recall that a self-dual doubly-even code of length n exists if and only if $n \equiv 0 \pmod{8}$. Using this fact, the graded ring generated by $H_C^{(0)}$ of all self-dual doubly-even codes C is just $\mathbb{C}[x^8]$. Let \mathfrak{S} (resp. $\tilde{\mathfrak{S}}$) be the graded ring generated by the $H_C^{(1)}$s and
the $H_{C}^{(1)}$'s (resp. the $H_{C}^{(1)}$'s) of all self-dual doubly-even codes C of any length.

3. The graded ring \mathfrak{H} is a free $\mathbb{C}[x^8, H_{e_8}^{(1)}]$-module with the basis 1, $H_{g_{24}}^{(1)}$, which is stated in our paper cited above. We shall sketch a proof of this fact. Let C be any self-dual doubly-even code of length n. The weight enumerator W_C can be written in the form $P(W_{e_8}, W_{g_{24}})$ for some polynomial $P(X, Y)$. This is a consequence of the structure theorem of \mathfrak{M}. Therefore we have

$$H_{C}^{(1)} = W_C - x^n$$
$$= P(W_{e_8}, W_{g_{24}}) - x^n$$
$$= P(H_{e_8}^{(1)} + x^8, H_{g_{24}}^{(1)} + x^{24}) - x^n$$

and this gives $\mathfrak{H} \subset \mathbb{C}[x^8, H_{e_8}^{(1)}, H_{g_{24}}^{(1)}]$, thus $\mathfrak{H} = \mathbb{C}[x^8, H_{e_8}^{(1)}, H_{g_{24}}^{(1)}]$. The computations show that we have

$$\mathfrak{H} = \mathbb{C}[x^8, H_{e_8}^{(1)}] \oplus \mathbb{C}[x^8, H_{e_8}^{(1)}, H_{g_{24}}^{(1)}],$$

where \oplus denotes the direct sum as modules.

4. The graded rings considered so far in this note are finitely generated. In this section, we will show that $\widetilde{\mathfrak{H}}$ is infinitely generated.

If

$$f = a_n x^n + a_{n-1} x^{n-1} y + \cdots + a_0 y^n,$$
$$a_n = \cdots = a_{\ell-1} = 0, \ a_\ell \neq 0,$$

then we write $w(f) = \ell$. We put $w(0) = \infty$. For any code C, we have $w(H_{C}^{(1)}) < n$, where n denotes the length of C. This fact will be used below.

Preparing this, we shall show that $\widetilde{\mathfrak{H}}$ is infinitely generated. Assume that $\widetilde{\mathfrak{H}}$ is finitely generated: $\widetilde{\mathfrak{H}} = \mathbb{C}[H_{C_1}^{(1)}, \ldots, H_{C_k}^{(1)}]$. For any positive integer d, we denote by $\widetilde{\mathfrak{H}}^{(d)}$ the subring of $\widetilde{\mathfrak{H}}$ generated by all elements of $\widetilde{\mathfrak{H}}$ whose degrees are multiples of d. The degrees of the generators of $\widetilde{\mathfrak{H}}$ may be different, however, some subring of $\widetilde{\mathfrak{H}}$ is able to be generated by the elements whose degrees are the same. More precisely there exists a positive integer r such that $\widetilde{\mathfrak{H}}^{(r)}$ can be generated by the F_1, \ldots, F_m.
whose degrees (as homogeneous polynomials in $\mathbb{C}[x, y]$) are r (cf. J. Igusa, “Theta Functions”, Springer-Verlag, p.89 Lemma 3). Here we may take each F_i as a monomial of $H_{C_1}^{(1)}, \ldots, H_{C_k}^{(1)}$. Moreover we assume $w(F_1) \leq w(F_2) \leq \cdots \leq w(F_m)$. We remark that $w(F_m) < r$ because of the fact stated after the definition of $w(*)$. By the formula (2), $x^r F_m$ belongs to $\mathfrak{F}(r)$ and can be written in the form

$$x^r F_m = \sum (\text{const.}) F_i F_j.$$

But this is impossible because of $w(x^r F_m) = r + w(F_m) > w(F_i F_j)$ for any i, j. Hence \mathfrak{F} is infinitely generated.

Division of Mathematics
School of Medicine
Sapporo Medical University