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Abstract. In the present paper, we discuss the class of Type III
and Type IV codes from the perspectives of neighbors. Our in-
vestigation analogously extends the results originally presented by
Dougherty [8] concerning the neighbor graph of binary self-dual
codes. Moreover, as an application of neighbors in invariant the-
ory, we show that the ring of the weight enumerators of Type II
code d+n and its neighbors in arbitrary genus is finitely generated.
Finally, we obtain a minimal set of generators of this ring up to
the space of degree 24 and genus 3.
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1. Introduction

One of the most celebrated classifications of codes in algebraic coding
theory is self-dual codes. The study of this type of codes is immensely
significant not only because of its various practical importance, as many
of the best-known codes are self-dual, but also its diverse theoretical
connections with geometric lattices, block designs and invariant theory.
For instance, see [1, 5, 16]. Brualdi and Pless [3] introduced the concept
of neighbors, a remarkable notion in the theory of binary self-dual
codes. Two binary self-dual codes of length n is known as neighbors if
they share a subcode of codimension 1. In a recent study, Dougherty [8]
defined neighbor graph of binary self-dual codes, where two codes are
connected by an edge if and only if they neighbors.

The main purpose of this paper is to extend the results in [8] to the
case of non-binary self-dual codes, namely for Type III and Type IV
codes. We define the notion of neighbors for the self-dual codes over
any finite field as follows:

*Corresponding author.
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Definition 1.1. Two self-dual codes of length n over Fq are called
neighbors if they share a subcode of dimension n

2
− 1, that is, their

intersection is a subcode of codimension 1.

In this note, we discuss some properties of neighbors in different
classes of self-dual codes, specifically, Type III codes, Type III codes
containing all-ones vector and Type IV codes. We refer the readers
to [4, 13, 18] for a detail discuss on Type III and Type IV codes. We
also define the neighbor graphs of above mentioned classes of self-dual
codes. We apply this notion in study of Type III and Type IV codes
and their neighbors. In particular, we use these graphs to count the
number of Type III (resp. Type IV) codes applying the concept of k-
neighbors. Moreover, we use the idea of k-neighbors of self-dual codes
over finite fields to define the notion of k-neighbor graphs. Using this
notion we derive several analogous results of counting formulae.

Definition 1.2. For 0 ≤ k ≤ n
2
, two self-dual codes of length n over Fq

are called k-neighbors if and only if they share a subcode of dimen-
sion n

2
− k.

Finally, we apply neighbors in invariant theory and prove that the
ring of the weight enumerators of Type II code d+

n and its neighbors
in arbitrary genus can be finitely generated over C. Finally, we show
that the space of degree 24 of this ring is strictly smaller than the ring
of the weight enumerators of all Type II codes.

This paper is organized as follows. In Section 2, we discuss definitions
and the basic properties of linear codes, neighbors and graphs that are
needed to understand this paper. In Section 3, we define the neighbor
graph of Type III codes, and answer various counting questions in this
graph. Using k-neighbors we also derive a new formula to count the
number of Type III codes. We illustrate these results in Sections 4 and 5
for other important classes of self-dual codes, for example, Type III
codes containing all-ones vector and Type IV codes. In Section 6, we
discuss k-neighbor graphs and its properties. Finally, in Section 7, we
discuss the invariant ring of the weight enumerators of Type II code d+

n

and its neighbors.
All computer calculations in this paper were done with the help of

Magma [2] and SageMath [22].

2. Preliminaries

In this section, we give a brief discussion on linear codes and graphs
including the basic definitions and properties. We follow [12, 14] for
the discussions.
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2.1. Linear codes. Let Fq be a finite field of order q, where q is a
prime power. In this paper, q will be either 2, 3 or 4. Then Fnq denotes
the vector space of dimension n with inner product:

u · v :=

{
u1v1 + · · ·+ unvn, if q = 2, 3

u1v
2
1 + · · ·+ unv

2
n, if q = 4

for u, v ∈ Fnq , where u = (u1, . . . , un) and v = (v1, . . . , vn). Here

F4 := {0, 1, ω, ω2} with 1 +ω+ω2 = 0. We call u and v are orthogonal
If u ·v = 0. An element u ∈ Fnq is called self-orthogonal if u ·u = 0. We
denote the all-ones vector by 1 and zero vector by 0. The weight wt(u)
of a vector u ∈ Fnq is the number of non-zero coordinates in it. An
Fq-linear code C of length n is a vector subspace of Fnq . The elements
of C are called codewords. The dual code of C is defined as

C⊥ := {v ∈ Fnq | u · v = 0 for all u ∈ C}.

If C ⊆ C⊥, then C is called self-orthogonal. Clearly, every codeword of
a self-orthogonal code is self-orthogonal. In addition, when C = C⊥,
we call C self-dual. It is well known that the length n of a self-dual
code over Fq is even and the dimension is n/2.

Lemma 2.1. Let n ≡ 0 (mod 4). Then the weight of any self-orthogonal
vector in Fn3 is divisible by 3.

Proof. Since n ≡ 0 (mod 4) and x2 = 1 for any non-zero x ∈ F3,
therefore any vector in Fn3 is self-orthogonal if and only if its weight is
divisible by 3. �

Lemma 2.2. Let n is even. Then the weight of each self-orthogonal
vector in Fn4 is even.

Proof. Since n is even and x3 = 1 for any non-zero x ∈ F4, therefore
any vector in Fn4 is self-orthogonal if and only if its weight is even. �

For any self-dual code C of length n over Fq, it is immediate that

C0 := {w ∈ C | w · v = 0}

is a subcode of C with co-dimension 1, where v ∈ Fnq is a self-orthogonal
vector not in C. Then it is not hard to show that NC(v) := 〈C0, v〉 is
a neighbor of C, see [8].

In general, a self-dual code C of length n over Fq has several neigh-
bors. We do not always have that NC(v1) 6= NC(v2) for v1 6= v2. Then
by the similar arguments in [8, Lemma 3.2], we have the following
useful lemma.
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Lemma 2.3. Let C be a self-dual code of length n over Fq. Let v1 and
v2 be self-orthogonal vectors in Fnq but not in C. Then NC(v1) = NC(v2)
if and only if there exists a vector w ∈ C such that w · v1 = 0 and
v2 = w + αv1 for any nonzero α ∈ Fq.

Lemma 2.4. Let C be a self-dual code of length n over Fq. Let v0 ∈ Fnq
be a self-orthogonal vector not in C. Then the number of self-orthogonal
vectors v ∈ Fnq such that NC(v) = NC(v0) is (q − 1)q

n
2
−1.

2.2. Graphs. A graph G := (V,E) consists of V , a non-empty set of
vertices, and E, a set of edges. An edge is usually incident with two
vertices. But if the edge incident with equal end vertices, the edge is
called a loop. A graph is called simple if it has neither loops nor multiple
edges. The degree of a vertex v in graph G, denoted by degG(v), is the
number of edges that are incident to v. The graph G is called regular
if degG(v) is same for each vertex v in G. A path in G is a sequence
of edges (e1, e2, . . . , em−1) having a sequence of vertices (v1, v2, . . . , vn)
satisfying ei 7→ {vi, vi+1} for i = 1, 2, . . . ,m − 1. If there is a path
between any two vertices of a graph, then the graph is called connected.

3. Type III codes

A self-dual code over F3 is called Type III if the weight of each code-
word is congruent to 0 (mod 3). We recall that Type III codes of
length n exists if and only if n ≡ 0 (mod 4). Let TIII(n) be the number
of Type III codes of length n ≡ 0 (mod 4). Fortunately, we have an ex-
plicit formula that gives the number TIII(n) as follows (see [16, 17, 20]):

(1) TIII(n) =

n
2
−1∏
i=0

(3i + 1).

Lemma 3.1. Let n ≡ 0 (mod 4). Then the number of self-orthogonal
vectors in Fn3 is 3n−1 + 3

n
2 − 3

n
2
−1.

Proof. It is immediate from [7, Theorem 65]. However, we give a dif-
ferent proof for this particular case. By Lemma 2.1, the number of
self-orthogonal vectors in Fn3 for n ≡ 0 (mod 4) is

C(n, 0) + 23C(n, 3) + 26C(n, 6) + · · ·+ 3nC(n, n),

where C(n, k) is the binomial function. Now let ω be the primitive cube
root of unity, satisfying ω3 = 1 and 1 +ω+ω2 = 0. Then immediately
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we can have

C(n, 0) + 23C(n, 3) + 26C(n, 6) + · · ·+ 2nC(n, n)

=
3n + (1 + 2ω)n + (1 + 2ω2)n

3

=
3n + 2.3

n
2

3
.

Hence, the number of self-orthogonal vectors is 3n−1 + 3
n
2 − 3

n
2
−1. �

Theorem 3.2. Let C be a Type III code of length n ≡ 0 (mod 4).
Then NC(v) is a Type III code if and only if v ∈ Fn3 is a self-orthogonal
vector not in C.

Proof. Suppose NC(v) is a Type III code. Then v must be a self-
orthogonal vector, otherwise NC(v) will no longer a Type III code.

Conversely, suppose that v ∈ Fn3 is a self-orthogonal vector not in C.
Then by Lemma 2.1, wt(v) ≡ 0 (mod 3). Since C is a Type III code,
therefore C0 = {w ∈ C | w · v = 0} is a subcode of C with co-
dimension 1. Let w ∈ C0. Then wt(w + v) ≡ 0 (mod 3), since self-
orthogonal vectors w and v are orthogonal to each other and

(w + v) · (w + v) = w · w + 2w · v + v · v = 0.

Therefore, the weight of each vector in NC(v) is a multiple of 3 and
hence NC(v) is a Type III code. �

Theorem 3.3. Let n ≡ 0 (mod 4). Let C be a Type III code of
length n. If C ′ = NC(v) for some self-orthogonal vector v ∈ Fn3 , then
C = NC′(w) for some self-orthogonal vector w ∈ Fn3 .

Proof. Let C be a Type III code of length n ≡ 0 (mod 4). Let v ∈ Fn3
be a self-orthogonal vector not in C. Then by Lemma 2.1, we get
wt(v) ≡ 0 (mod 3). Then C0 = {u ∈ C | u · v = 0} is a subcode
of C with co-dimension 1. This implies C = 〈C0, w〉 for some self-
orthogonal vector w. By Lemma 2.1, wt(w) ≡ 0 (mod 3). Clearly, w
is orthogonal to each vector in C0. Moreover, by Theorem 3.2, we have
C ′ = NC(v) is a Type III code. This implies NC′(w) is also a Type III
code. Let C ′0 = {u′ ∈ C ′ | u′ ·w = 0}. Then C ′0 is a subcode of C ′ with
co-dimension 1. Since w is orthogonal to each vector in C0, therefore
C ′0 = C0. Hence C = 〈C0, w〉 = 〈C ′0, w〉 = NC′(w). �

Definition 3.4. Let n ≡ 0 (mod 4). Let VIII(n) be the set of all
Type III codes of length n. Let ΓIII(n) := (VIII(n), EIII(n)) be a graph,
where any two vertices in VIII(n) are connected by an edge in EIII(n) if
and only if they are neighbors.
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The following theorems gives basic properties of ΓIII(n) and answers
the various counting questions related to it.

Theorem 3.5. The graph ΓIII(n) is simple and undirected.

Proof. Since any Type III code is not a neighbor of itself, therefore
ΓIII(n) contains no loop. Moreover, by Theorem 3.3, we have if C is
connected to C ′, then C ′ is connected to C. This implies ΓIII(n) is not
a directed graph. �

Theorem 3.6. Let n ≡ 0 (mod 4). Then the graph ΓIII(n) is connected
with maximum path length n

2
between two vertices.

Proof. Let C1 and C2 be two Type III codes of length n ≡ 0 (mod 4).
Let C2 = 〈v1, . . . , vn

2
〉. Then each vi is a self-orthogonal vector such

that wt(vi) ≡ 0 (mod 3). Let D1 := NC1(v1) and Di := NDi−1
(vi) for

i = 2, . . . , n
2
. Then C1, D1, D2, . . ., Dn

2
= C2 is the path from C1 to C2.

Hence the graph ΓIII(n) is connected. By Example 3.7, we can have
two Type III codes, say C ′1 and C ′2 such that the maximum path length
between them in ΓIII(4) is 2. Now let the following k-times direct sums
for positive integer k:

C1 = C ′1 ⊕ · · · ⊕ C ′1,
C2 = C ′2 ⊕ · · · ⊕ C ′2.

This implies the length of C1 and C2 is 4k and C1 ∩ C2 = 0. Hence
there exists two Type III codes of length n ≡ 0 (mod 4) such that the
maximum path length is n

2
in the graph ΓIII(n) is n

2
. �

Example 3.7. Let C1 be a code of length 4 over F3 with generator
matrix: (

1 0 1 1
0 1 1 2

)
.

It is easy to check that C1 is a Type III code. Then D1 := NC1(v1) is a
neighbor of C1, where v1 = (1, 0, 2, 2) is a self-orthogonal vector in F4

3

and not in C1. Also, D2 := ND1(v2) is a neighbor of D1, where v2 =
(0, 1, 2, 1) is a self-orthogonal vector in F4

3 and not in D1. Immediately,
D1 and D2 are Type III codes. The generator matrix of D2 is:(

1 0 2 2
0 1 2 1

)
.

Moreover, we can see that C1 ∩D2 = 0. This conclude that the maxi-
mum path length of the graph ΓIII(4) is 2.

Theorem 3.8. Let n ≡ 0 (mod 4). Then the number of vertices in

ΓIII(n) is
∏n

2
−1

i=0 (3i + 1).
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Proof. We can have the number of Type III codes of length n ≡ 0
(mod 4) from (1). This completes the proof. �

Lemma 3.9. Let n ≡ 0 (mod 4). Let C be a Type III code of length n.
Suppose v0 ∈ Fn3 be a self-orthogonal vector not in C. Then the number
of self-orthogonal vectors v ∈ Fn3 such that NC(v) = NC(v0) is 2.3

n
2
−1.

Proof. By Lemmas 2.1 and 2.4, we can obtain the result. �

Theorem 3.10. Let n ≡ 0 (mod 4). Then the graph ΓIII(n) is regular
with degree 1

2
(3

n
2 − 1).

Proof. Let C be a Type III code of length n ≡ 0 (mod 4). Then by
Lemma 3.1, we have the number of self-orthogonal vectors in Fn3 but
not in C is 3n−1 − 3

n
2
−1. Moreover, by Lemma 3.9, each Type III code

of length n occurs 2.3
n
2
−1 times. Hence the degree of each vertex v in

ΓIII(n) is

degΓIII(n)(v) =
3n−1 − 3

n
2
−1

2.3
n
2
−1

=
3

n
2 − 1

2
.

�

Theorem 3.11. Let n ≡ 0 (mod 4). Then the number of edges in ΓIII(n)
is

1

2

n
2
−1∏
i=1

(3i + 1)

 (3
n
2 − 1).

Proof. By Theorem 3.8, the number of vertex in the graph ΓIII(n)

is 2
∏n

2
−1

i=1 (3i + 1). Since the graph is regular with degree 1
2
(3

n
2 − 1).

Therefore,

2|EIII(n)| =

2

n
2
−1∏
i=1

(3i + 1)

 1

2
(3

n
2 − 1).

This gives the result. �

In the graph ΓIII(n), if the shortest path between two vertices has
length k, we call the two vertices are in distance k apart. In this case,
the corresponding two Type III codes in VIII(n) are called k-neighbors
and share a subcode of co-dimension k.

Remark 3.12. Every Type III code in VIII(n) is its 0-neighbor.

Let C be a Type III code of length n ≡ 0 (mod 4). For any non-
negative integer k, we denote the number of Type III k-neighbors of C
by LIII

k (n) in ΓIII(n). By Remark 3.12, we have LIII
0 (n) = 1. Now the

following theorem gives LIII
k (n) for k > 0.



8 CHAKRABORTY, CHIARI, MIEZAKI, AND OURA

Theorem 3.13. Let n ≡ 0 (mod 4). Let C be a Type III code of
length n. Then for k > 0, we have

LIII
k (n) =

∏k−1
i=0 (3n−1−i − 3

n
2
−1)∏k−1

j=0(3
n
2 − 3

n
2
−1−j)

.

Proof. Let C be a Type III code of length n. Then

LIII
k (n) = #{D ∈ VIII(n) | D is a k-neighbor of C}.

Let Sk(n) be the set of k different self-orthogonal vectors v1, v2, . . . , vk ∈
Fn3 and not in C such that each vj are orthogonal to v1, v2, . . . , vj−1.
Then

LIII
k (n) =

#Sk(n)

#ways each neighbor of C is generated
.

By Lemma 3.1, we have the number of self-orthogonal vectors in Fn3 that
are not in C is 3n−1− 3

n
2
−1. Moreover, each choice of a self-orthogonal

vector vj reduces the number of available self-orthogonal vectors in
ambient space by 1

3
, since it must be orthogonal to the previous vj

and its weight is multiple of 3. This provides that the number of
choices for the vectors is

∏k−1
i=0 (3n−1−i − 3

n
2
−1) the number of choices

for self-orthogonal vectors. By using Lemma 2.4 recursively, we can
have

∏k−1
j=0(3

n
2 − 3

n
2
−1−j) the number of ways each neighbor of C is

generated. Hence

LIII
k (n) =

∏k−1
i=0 (3n−1−i − 3

n
2
−1)∏k−1

j=0(3
n
2 − 3

n
2
−1−j)

.

This completes the proof. �

Remark 3.14. Taking k = 1 in the above theorem, we have

LIII
1 (n) =

3n−1 − 3
n
2
−1

3
n
2 − 3

n
2
−1

=
3n − 3

n
2

2.3
n
2

=
3

n
2 − 1

2
.

This gives the number of 1-neighbors of C as presented in Theorem 3.10

Example 3.15. Let n = 4. Then TIII(n) =
∏n

2
−1

i=0 (3i + 1) = 8. More-
over, deg(ΓIII(n)) = 1

2
(3

n
2 − 1) = 4. This implies the graph ΓIII(n)

has 8 vertices and is regular with degree 4. By Remark 3.12, we have
LIII
k (n) = 1 for k = 0. By Theorem 3.13, we have the following k-

neighbors of ΓIII(n).

For k = 1: LIII
k (n) =

33 − 3

32 − 3
= 4.

For k = 2: LIII
k (n) =

(33 − 3)(32 − 3)

(32 − 3)(32 − 1)
= 3.

Then 1 + 4 + 3 = 8 which is the total number of Type III codes.
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The observation in the above example concludes the following result.

Theorem 3.16. Let n ≡ 0 (mod 4). Then the number of Type III

codes of length n is
∑n

2
k=0 L

III
k (n).

Proof. Let C1 and C2 be any two Type III codes of length n ≡ 0
(mod 4). If C1 and C2 are connected by a path in ΓIII(n), then by
Theorem 3.6, the maximum path length will be n

2
. This completes the

proof. �

Example 3.17. Let n = 0 (mod 4) be the length of the Type III
codes, |VIII(n)| the number of vertices in the graphs ΓIII(n). In Table 1
we listed the k-neighbors of ΓIII(n) up to n = 12. Note that in each
row k goes from 0 to n

2
and sum the sum of the k-neighbors in each

row is |VIII(n)| as in Theorem 3.16.

Table 1. List of k-Neighbors in ΓIII(n) up to n = 12

n |VIII(n)| k-neighbors
0 1 2 3 4 5 6

4 8 1 4 3 0 0 0 0
8 2240 1 40 390 1080 729 0 0
12 44817920 1 364 33033 914760 8027019 21493836 14348907

4. Type III code with all-ones vector

In this section, we assume the Type III codes that contain the all-
ones vector 1. This additional assumption in Type III codes conclude
that the length of the code n ≡ 0 (mod 12).

Lemma 4.1. Let n ≡ 0 (mod 12). The number of self-orthogonal
vectors in Fn3 that are also orthogonal to 1 is 3n−2 + 3

n
2 − 3

n
2
−1.

Proof. Since n ≡ 0 (mod 12). By Lemma 3.1, we have the number
of self-orthogonal vectors in Fn3 is 3n−1 + 3

n
2 − 3

n
2
−1. Then clearly the

number of a self-orthogonal vector that are also orthogonal to 1 is
3n−2 + 3

n
2 − 3

n
2
−1. �

Theorem 4.2. Let n ≡ 0 (mod 12). Let C be a Type III code of
length n containing all-ones vector. Then NC(v) is a Type III code
containing all-ones vector if and only if v ∈ Fn3 is a self-orthogonal
vector not in C such that 1 · v = 0.



10 CHAKRABORTY, CHIARI, MIEZAKI, AND OURA

Proof. Suppose NC(v) is a Type III code containing 1. Then v must
be a self-orthogonal vector such that 1 · v = 0, otherwise NC(v) will no
longer a Type III code containing 1.

Conversely, suppose that v ∈ Fn3 is a self-orthogonal vector not in C
such that 1·v = 0. This implies v ∈ 〈1〉⊥. Let C0 = {w ∈ C | w·v = 0}.
Then by Lemma 2.1, wt(w + v) ≡ 0 (mod 3). Since C is a Type III
code, therefore C0 is a subcode of C with co-dimension 1. This implies
that the weight of each vector in NC(v) is a multiple of 3. Moreover,
C contains 1 and 1 · v = 0. Hence NC(v) is a Type III code containing
all-ones vector. �

Theorem 4.3. Let n ≡ 0 (mod 12). Let C be a Type III code of
length n containing all-ones vector. If C ′ = NC(v) for some self-
orthogonal vector v such that 1 · v = 0, then C = NC′(w) for some
self-orthogonal vector w such that 1 · w = 0

Proof. Let C be a Type III code containing 1 and v be a self-orthogonal
vector not in C such that 1 · v = 0. This implies v ∈ 〈1〉⊥. Then
C0 = {u ∈ C | u·v = 0} is a subcode of C with co-dimension 1. This im-
plies C = 〈C0, w〉 for some self-orthogonal vector w such that 1 ·w = 0.
Clearly, w is orthogonal to each vector in C0. By Lemma 2.1, we
have wt(v) ≡ 0 (mod 4) and wt(w) ≡ 0 (mod 4). Moreover, by The-
orem 4.2, C ′ = NC(v) is a Type III code containing 1. This implies
NC′(w) is also a Type III code. Let C ′0 = {u′ ∈ C ′ | u′ · w = 0}. Then
C ′0 is a subcode of C ′ with co-dimension 1. Since w is orthogonal to
each vector in C0, therefore C ′0 = C0. Hence C = 〈C0, w〉 = 〈C ′0, w〉 =
NC′(w). �

Definition 4.4. Let n ≡ 0 (mod 12). Let VIII(n,1) be the set all
Type III codes of length n containing 1. Let ΓIII(n,1) := (VIII(n,1), EIII(n,1))
be a graph, where any two vertices in VIII(n,1) are connected by an
edge in EIII(n,1) if and only if they are neighbors.

The following theorems gives basic properties of ΓIII(n) and answers
the various counting questions related to it.

Theorem 4.5. Let n ≡ 0 (mod 12). Then the graph ΓIII(n,1) is sim-
ple and undirected.

Proof. Since any Type III code containing 1 is not a neighbor of itself,
therefore ΓIII(n,1) contains no loop. Moreover, by Theorem 4.3, we
have if C is connected to C ′, then C ′ is connected to C. This implies
ΓIII(n,1) is not a directed graph. �

Theorem 4.6. Let n ≡ 0 (mod 12). The graph ΓIII(n,1) is connected
with maximum path length n

2
− 1 between two vertices.
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Proof. Let C1 and C2 be two Type III codes of length n ≡ 0 (mod 12)
containing 1. Let C2 = 〈v1, . . . , vn

2
〉. Then each vi is a self-orthogonal

vector such that 1 · vi = 0. This implies each vi ∈ 〈1〉⊥. Let D1 =
NC1(v1) and Di = NDi−1

(vi) for i = 2, . . . , n
2
. Then C1, D1, D2, . . .,

Dn
2

is the path from C1 to C2. Hence the graph ΓIII(n,1) is connected.
Since each Type III code in ΓIII(n,1) contains 1, they must have a
subspace of dimension 1 in common. This implies that the maximum
distance in the graph ΓIII(n,1) is n

2
− 1. �

Theorem 4.7. Let n ≡ 0 (mod 12). Then the number of vertices in

ΓIII(n,1) is 2
∏n

2
−2

i=1 (3i + 1).

Proof. We know that the number of Type III codes of length n ≡ 0

(mod 12) containing 1 is 2
∏n

2
−2

i=1 (3i + 1), see [18]. This completes the
proof. �

Lemma 4.8. Let n ≡ 0 (mod 12). Let C be a Type III code of length n
containing 1. Suppose v0 ∈ Fn3 be a self-orthogonal vector not in C such
that 1 · v0 = 0. Then the number of self-orthogonal vectors v ∈ Fn3 such
that NC(v) = NC(v0) is 2.3

n
2
−1.

Proof. By Lemmas 2.1 and 2.3, we can obtain the result. �

Theorem 4.9. Let n ≡ 0 (mod 12). Then the graph ΓIII(n,1) is reg-

ular with degree
1

2
(3

n
2
−1 − 1).

Proof. Let C be a Type III code containing 1. Then by Lemma 4.1, we
have the number of self-orthogonal vectors in Fn3 that are orthogonal to
1 but not in C is 3n−2− 3

n
2
−1. Moreover, by Lemma 4.8, each Type III

code of length n occurs 2.3
n
2
−1 times. Hence the degree of each vertex v

in ΓIII(n,1) is

degΓIII(n,1)(v) =
3n−2 − 3

n
2
−1

2.3
n
2
−1

=
3

n
2
−1 − 1

2
.

�

Theorem 4.10. Let n ≡ 0 (mod 12). Then the number of edges in
the graph ΓIII(n,1) is

1

2

n
2
−2∏
i=1

(3i + 1)

 (3
n
2
−1 − 1)

.
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Proof. By Theorem 4.7, the number of vertex in the graph ΓIII(n,1)

is 2
∏n

2
−2

i=1 (3i + 1). Since the graph is regular with degree 1
2
(3

n
2
−1 − 1).

Therefore,

2|EIII(n,1)| =

2

n
2
−2∏
i=1

(3i + 1)

 1

2
(3

n
2
−1 − 1).

This gives the result. �

Remark 4.11. Every Type III code in VIII(n,1) is its 0-neighbor.

Let C be a Type III code of length n ≡ 0 (mod 12) containing 1.
For any non-negative integer k, we denote the number of Type III k-
neighbors of C by LIII

k (n,1) in ΓIII(n,1). By Remark 4.11, we have
LIII

0 (n,1) = 1. Now the following theorem gives LIII
k (n,1) for k > 0.

Theorem 4.12. Let n ≡ 0 (mod 12). Let C be a Type III code of
length n containing 1. Then for k > 0, we have

LIII
k (n,1) =

∏k−1
i=0 (3n−2−i − 3

n
2
−1)∏k−1

j=0(3
n
2 − 3

n
2
−1−j)

.

Proof. Let C be a Type III code of length n ≡ 0 (mod 12) containing 1.
Then

LIII
k (n,1) = #{D ∈ VIII(n,1) | D is a k-neighbor of C}.

Let Sk(n,1) be the set of k different self-orthogonal vectors v1, v2, . . . , vk ∈
Fn3 and not in C such that each vj are orthogonal to 1, v1, v2, . . . , vj−1.
Then

LIII
k (n,1) =

#Sk(n,1)

#ways each k-neighbor of C is generated
.

By Lemma 4.1, we have the number of self-orthogonal vectors in Fn3
that are orthogonal to 1 and not in C is 3n−2 − 3

n
2
−1. Moreover, each

choice of a self-orthogonal vector vj reduces the number of available self-
orthogonal vectors in ambient space by 1

3
, since it must be orthogonal

to the previous vj and its weight is multiple of 3. This provides that the

number of choices for the vectors is
∏k−1

i=0 (3n−2−i − 3
n
2
−1) the number

of choices for self-orthogonal vectors. By using Lemma 2.4 recursively,
we can have

∏k−1
j=0(3

n
2 − 3

n
2
−1−j) the number of ways each k-neighbor

of C is generated. Hence

LIII
k (n,1) =

∏k−1
i=0 (3n−2−i − 3

n
2
−1)∏k−1

j=0(3
n
2 − 3

n
2
−1−j)

.

This completes the proof. �
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Remark 4.13. Taking k = 1 in the above theorem, we have

LIII
1 (n,1) =

3n−2 − 3
n
2
−1

3
n
2 − 3

n
2
−1

=
3n−1 − 3

n
2

2.3
n
2

=
3

n
2
−1 − 1

2
.

This gives the number of 1-neighbors of a Type III code with 1 as
presented in Theorem 4.9.

Example 4.14. Let n = 12. Then TIII(n,1) =
∏n

2
−2

i=0 (3i + 1) =
183680. Moreover, deg(ΓIII(n)) = 1

2
(3

n
2
−1 − 1) = 121. This implies

the graph ΓIII(n,1) has 183680 vertices and is regular with degree 121.
By Remark 4.11, we have LIII

k (n) = 1 for k = 0. By Theorem 4.12, we
have the following k-neighbors of ΓIII(n,1).

For k = 1: LIII
k (n,1) =

310 − 35

36 − 35
= 121.

For k = 2: LIII
k (n,1) =

(310 − 35)(39 − 35)

(36 − 35)(36 − 34)
= 3630.

For k = 3: LIII
k (n,1) =

(310 − 35)(39 − 35)(38 − 35)

(36 − 35)(36 − 34)(36 − 33)
= 32670.

For k = 4: LIII
k (n,1) =

(310 − 35)(39 − 35)(38 − 35)(37 − 35)

(36 − 35)(36 − 34)(36 − 33)(36 − 32)
= 88209.

For k = 5: LIII
k (n,1) =

(310 − 35)(39 − 35)(38 − 35)(37 − 35)(36 − 35)

(36 − 35)(36 − 34)(36 − 33)(36 − 32)(36 − 3)
= 59049.

Then 1 + 121 + 3630 + 32670 + 88209 + 59049 = 183680 which is the
total number of Type III codes containing 1.

Now we have the following analogous result of Theorem 3.16.

Theorem 4.15. Let n ≡ 0 (mod 12). The number of Type III codes

of length n containing 1 is
∑n

2
−1

k=0 L
III
k (n,1).

Proof. Let C1 and C2 be any two Type III codes of length n ≡ 0
(mod 12) containing 1. If C1 and C2 are connected by a path in ΓIII(n,1),
then by Theorem 4.6, the maximum path length will be n

2
− 1. This

completes the proof. �

5. Type IV codes

A self-dual code over F4 where all codewords have even weights is
called Type IV code. It is well-known that the Type IV code exists
if and only if n ≡ 0 (mod 2). Let TIV(n) be the number of Type IV
codes of length n ≡ 0 (mod 2). From [16, 17, 20], we have an explicit
formula that gives the number TIV(n) as follows :
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(2) TIV(n) =

n
2
−1∏
i=0

(22i+1 + 1).

Lemma 5.1. Let n ≡ 0 (mod 2). Then the number of self-orthogonal
vectors in Fn4 is 2n−1(2n + 1).

Proof. By Lemma 2.2, the number of self-orthogonal vectors of length n ≡
0 (mod 2) is

C(n, 0) + 32C(n, 2) + 34C(n, 4) + · · ·+ 3nC(n, n),

where C(n, k) is the binomial function. Then immediately it can be
written that

C(n, 0) + 32C(n, 2) + 34C(n, 4) + · · ·+ 3nC(n, n)

=
4n + 2n

2
= 22n−1 + 2n−1.

Hence the number of self-orthogonal vectors is 2n−1(2n + 1). �

Theorem 5.2. Let n ≡ 0 (mod 2). Let C be a Type IV code of
length n. Then NC(v) is a Type IV code if and only if v ∈ Fn4 is a
self-orthogonal vector.

Proof. Suppose NC(v) is a Type IV code of length n ≡ 0 (mod 2).
Then v must be a self-orthogonal vector with even weight, otherwise
NC(v) will no longer a Type IV code.

Conversely, suppose that v ∈ Fn4 is a self-orthogonal vector not in C.
Then by Lemma 2.2, wt(v) ≡ 0 (mod 2). Since C is a Type IV code,
therefore C0 = {w ∈ C | w · v = 0} is a subcode of C with co-
dimension 1. Let w ∈ C0. Then wt(w + v) ≡ 0 (mod 2), since self-
orthogonal vectors w and v have even weights and are orthogonal to
each other and

(w + v) · (w + v) = w · w + 2w · v + v · v = 0.

Therefore, the weight of each vector in NC(v) is even and hence NC(v)
is a Type IV code. �

Theorem 5.3. Let n ≡ 0 (mod 2). Let C be a Type IV code of
length n. If C ′ = NC(v) for some self-orthogonal vector v ∈ Fn4 , then
C = NC′(w) for some self-orthogonal vector w ∈ Fn4 .

Proof. Let C be a Type IV code and v be a self-orthogonal vector not
in C. Then by Lemma 2.2, we have wt(v) is even. Then C0 = {u ∈
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C | u · v = 0} is a subcode of C with co-dimension 1. This implies C =
〈C0, w〉 for some self-orthogonal vector w. By Lemma 2.2, wt(w) ≡ 0
(mod 2). Clearly, w is orthogonal to each vector in C0. Moreover, by
Theorem 5.2, C ′ = NC(v) is a Type IV code. This implies NC′(w) is
also a Type IV code. Let C ′0 = {u′ ∈ C ′ | u′ · w = 0}. Then C ′0 is a
subcode of C ′ with co-dimension 1. Since w is orthogonal to each vector
in C0, therefore C ′0 = C0. Hence C = 〈C0, w〉 = 〈C ′0, w〉 = NC′(w). �

Definition 5.4. Let n ≡ 0 (mod 2). Let VIV(n) be the set all Type IV
codes of length n. Let ΓIV(n) := (VIV(n), EIV(n)) be a graph, where
any two vertices in VIV(n) are connected by an edge in EIV(n) if and
only if they are neighbors.

The following theorems gives basic properties of ΓIV(n) and answers
the various counting questions related to it.

Theorem 5.5. Let n ≡ 0 (mod 2). Then the graph ΓIV(n) is simple
and undirected.

Proof. Since any Type IV code is not a neighbor of itself, therefore
ΓIV(n) contains no loop. Moreover, by Theorem 5.3, we have if C is
connected to C ′, then C ′ is connected to C. This implies ΓIV(n) is not
a directed graph. �

Theorem 5.6. Let n ≡ 0 (mod 2). Then the graph ΓIV(n) is connected
with maximum path length n

2
between two vertices.

Proof. Let C1 and C2 be two Type IV codes of length n ≡ 0 (mod 2).
Let C2 = 〈v1, . . . , vn

2
〉. Then each vi is a self-orthogonal vector such

that wt(vi) ≡ 0 (mod 2). Let D1 := NC1(v1) and Di := NDi−1
(vi) for

i = 2, . . . , n
2
. Then C1, D1, D2, . . ., Dn

2
= C2 is the path from C1 to

C2. Hence the graph ΓIV(n) is connected. To show the maximum path
length between two vertices is n

2
, let n = 2. Let

C ′1 = {(0, 0), (1, 1), (ω, ω), (ω2, ω2)}

be a code of length 2 over F4. It is easy to check that C ′1 is Type IV.
Then immediately we have

C ′2 = {(0, 0), (1, ω2), (ω, 1), (ω2, ω)},

which is a neighbor of C ′1 have path length 1. Now let the following
k-times direct sums for positive integer k:

C1 = C ′1 ⊕ · · · ⊕ C ′1,
C2 = C ′2 ⊕ · · · ⊕ C ′2.
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This implies the length of C1 and C2 is 2k and C1 ∩ C2 = 0. Hence
there exists two Type IV codes of length n ≡ 0 (mod 2) such that the
maximum path length is n

2
in the graph ΓIV(n) is n

2
. �

Example 5.7. Let C be a code of length 4 over F4 with generator
matrix: (

1 1 0 0
0 0 1 1

)
.

It is easy to check that C is a Type IV code. Then D1 := NC(v1) is a
neighbor of C, where v1 = (1, ω, 0, 0) is a self-orthogonal vector in F4

4

and not in C. Also, D2 := ND1(v2) is a neighbor of D1, where v2 =
(0, 0, 1, ω2) is a self-orthogonal vector in F4

4 and not in D1. Immediately,
D1 and D2 are Type IV codes. The generator matrix of D2 is:(

1 ω 0 0
0 0 1 ω2

)
.

Moreover, we can see that C ∩D2 = 0. This conclude that the maxi-
mum path length of the graph ΓIV(4) is 2.

Theorem 5.8. Let n ≡ 0 (mod 2). Then the number of vertices in

ΓIV(n) is
∏n

2
−1

i=0 (22i+1 + 1).

Proof. We can have the number of Type IV codes of length n ≡ 0
(mod 2) from (2). This completes the proof. �

Lemma 5.9. Let n ≡ 0 (mod 2). Let C be a Type IV code of length n.
Suppose v0 ∈ Fn4 be a self-orthogonal vector not in C. Then the number
of self-orthogonal vectors v ∈ Fn4 such that NC(v) = NC(v0) is 3.4

n
2
−1.

Proof. By Lemmas 2.2 and 2.4, we can obtain the result. �

Theorem 5.10. Let n ≡ 0 (mod 2). Then the graph ΓIV(n) is regular
with degree 2

3
(2n − 1).

Proof. Let C be a Type IV code of length n ≡ 0 (mod 2). Then by
Lemma 5.1, we have the number of self-orthogonal vectors in Fn4 but
not in C is 22n−1− 2n−1. Moreover, by Lemma 5.9, each Type IV code
of length n occurs 3.4

n
2
−1 times. Hence the degree of each vertex v in

ΓIV(n) is

degΓIV(n)(v) =
22n−1 − 2n−1

3.4
n
2
−1

=
2(2n − 1)

3
.

�
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Theorem 5.11. Let n ≡ 0 (mod 2). Then the number of edge in ΓIV(n)
is n

2
−1∏
i=1

(22i+1 + 1)

 (2n − 1).

Proof. By Theorem 5.8, the number of vertex in the graph ΓIV(n)

is 2
∏n

2
−1

i=0 (22i+1 + 1). Since the graph is regular with degree 2
3
(2n − 1).

Therefore,

2|EIV(n)| =

3

n
2
−1∏
i=1

(22i+1 + 1)

 2

3
(2n − 1).

This gives the result. �

In the graph ΓIV(n), if the shortest path between two vertices has
length k, we call the two vertices are in distance k apart. In this case,
the corresponding two Type IV codes in VIV(n) are called k-neighbors
and share a subcode of co-dimension k.

Remark 5.12. Every Type III code in VIV(n) is its 0-neighbor.

Let C be a Type IV code of length n ≡ 0 (mod 2). For any non-
negative integer k, we denote the number of Type IV k-neighbors of C
by LIV

k (n) in ΓIV(n). By Remark 5.12, we have LIV
0 (n) = 1. Now the

following theorem gives LIV
k (n) for k > 0.

Theorem 5.13. Let n ≡ 0 (mod 2). Let C be a Type IV code of
length n. Then for k > 0, we have

LIV
k (n) =

∏k−1
i=0 (22n−1−2i − 2n−1)∏k−1
j=0(2n − 2n−2−2j)

.

Proof. Let C be a Type IV code of length n ≡ 0 (mod 2). Then

LIV
k (n) = #{D ∈ VIV(n) | D is a k-neighbor of C}.

Let Sk(n) be the set of k different self-orthogonal vectors v1, v2, . . . , vk ∈
Fn4 and not in C such that each vj are orthogonal to v1, v2, . . . , vj−1.
Then

LIV
k (n) =

#Sk(n)

#ways each neighbor of C is generated
.

By Lemma 5.1, we have the number of self-orthogonal vectors in Fn4
that are not in C is 22n−1 − 2n−1.

Moreover, each choice of a self-orthogonal vector vj reduces the num-
ber of available self-orthogonal vectors in ambient space by 1

4
, since it is

even weight and must be orthogonal to the previous vj. This provides
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that the number of choices for the vectors is
∏k−1

i=0 (22n−1−2i − 2n−1)
the number of choices for self-orthogonal vectors. By using Lemma 2.4
recursively, we can have

∏k−1
j=0(2n − 2n−2−2j) the number of ways each

neighbor of C is generated. Hence

LIV
k (n) =

∏k−1
i=0 (22n−1−2i − 2n−1)∏k−1
j=0(2n − 2n−2−2j)

.

This completes the proof. �

Remark 5.14. Taking k = 1 in the above theorem, we have

LIV
1 (n) =

22n−1 − 2n−1

2n − 2n−2
=

22n−1 − 2n−1

3.2n−2
=

2(2n − 1)

3
.

This gives the number of 1-neighbors of Type IV codes as presented in
Theorem 5.10

Example 5.15. Let n = 6. Then TIV(n) =
∏n

2
−1

i=0 (22i+1 + 1) = 891.
Moreover, deg(ΓIV(n)) = 2

3
(2n−1) = 42. This implies the graph ΓIV(n)

has 891 vertices and is regular with degree 42. By Remark 5.12, we
have LIV

k (n) = 1 for k = 0. By Theorem 5.13, we have the following
k-neighbors of ΓIV(n).

For k = 1: LIV
k (n) =

211 − 25

26 − 24
= 42.

For k = 2: LIV
k (n) =

(211 − 25)(29 − 25)

(26 − 24)(26 − 22)
= 336.

For k = 3: LIV
k (n) =

(211 − 25)(29 − 25)(27 − 25)

(26 − 24)(26 − 22)(26 − 1)
= 512

Then 1 + 42 + 336 + 512 = 891 which is the total number of Type IV
codes.

The following result is the Type IV code analogue of Theorem 3.16.

Theorem 5.16. Let n ≡ 0 (mod 2). Then the number of Type IV

codes of length n is
∑n

2
k=0 L

IV
k (n).

Proof. Let C1 and C2 be any two Type IV codes of length n ≡ 0
(mod 4). If C1 and C2 are connected by a path in ΓIV(n), then by
Theorem 5.6, the maximum path length will be n

2
. This completes the

proof. �

Example 5.17. Let n = 0 (mod 2) be the length of the Type IV codes,
|VIV(n)| the number of vertices in the graphs ΓIV(n). In Table 2, we
listed the k-neighbors of ΓIV(n) up to n = 10. Note that in each row
k goes from 0 to n

2
and sum the sum of the k-neighbors in each row

is |VIV(n)| as in Theorem 5.16.
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Table 2. List of k-Neighbors in ΓIV(n) up to n = 10

n |VIII(n)| k-neighbors
0 1 2 3 4 5

2 3 1 2 0 0 0 0
4 27 1 10 16 0 0 0
6 891 1 42 336 512 0 0
8 114939 1 170 5712 43520 65536 0
10 58963707 1 682 92752 2968064 22347776 33554432

6. k-Neighbor graphs

Definition 6.1. Let n ≡ 0 (mod 4). Let VIII(n) be the set all Type III
codes of length n. Let ΓkIII(n) := (VIII(n), EIII(n)) be a graph, where
any two vertices in VIII(n) are connected by an edge in EIII(n) if and
only if they are k-neighbors.

Theorem 6.2. Let n ≡ 0 (mod 4). Then the graph ΓkIII(n) satisfies
the following properties.

(a) The number of vertices is 2
∏n

2
−1

i=1 (3i + 1).

(b) The graph is regular with degree

∏k−1
i=0 (3n−1−i − 3

n
2
−1)∏k−1

j=0(3
n
2 − 3

n
2
−1−j)

.

(c) The number of edges is
∏n

2
−1

i=1 (3i + 1)

∏k−1
i=0 (3n−1−i − 3

n
2
−1)∏k−1

j=0(3
n
2 − 3

n
2
−1−j)

.

Proof. Theorems 3.8 and 3.10 shows the statements (a) and (b), re-
spectively. The proof of statement (c) is similar to the proof of Theo-
rem 3.11. �

Definition 6.3. Let n ≡ 0 (mod 12). Let VIII(n,1) be the set all
Type III codes of length n containing 1. Let ΓkIII(n,1) := (VIII(n,1), EIII(n,1))
be a graph, where any two vertices in VIII(n,1) are connected by an
edge in EIII(n,1) if and only if they are k-neighbors.

Theorem 6.4. Let n ≡ 0 (mod 12). Then the graph ΓkIII(n,1) satisfies
the following properties.

(a) The number of vertices is 2
∏n

2
−2

i=1 (3i + 1).

(b) The graph is regular with degree

∏k−1
i=0 (3n−2−i − 3

n
2
−1)∏k−1

j=0(3
n
2 − 3

n
2
−1−j)

.

(c) The number of edges is
∏n

2
−2

i=1 (3i + 1)

∏k−1
i=0 (3n−2−i − 3

n
2
−1)∏k−1

j=0(3
n
2 − 3

n
2
−1−j)

.
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Proof. Theorems 4.7 and 4.9 shows the statements (a) and (b), respec-
tively. The proof of statement (c) is similar to the proof of Theo-
rem 4.10. �

Definition 6.5. Let n ≡ 0 (mod 2). Let VIV(n) be the set all Type IV
codes of length n. Let ΓkIV(n) := (VIV(n), EIV(n)) be a graph, where
any two vertices in VIV(n) are connected by an edge in EIV(n) if and
only if they are neighbors.

Theorem 6.6. Let n ≡ 0 (mod 2). Then the graph ΓkIV(n) satisfies
the following properties.

(a) The number of vertices is
∏n

2
−1

i=0 (22i+1 + 1).

(b) The graph is regular with degree

∏k−1
i=0 (22n−1−2i − 2n−1)∏k−1
j=0(2n − 2n−2−2j)

.

(c) The number of edges is 1
2

∏n
2
−1

i=0 (22i+1+1)

∏k−1
i=0 (22n−1−2i − 2n−1)∏k−1
j=0(2n − 2n−2−2j)

.

Proof. Theorems 5.8 and 5.10 shows the statements (a) and (b), re-
spectively. The proof of statement (c) is similar to the proof of Theo-
rem 5.11. �

7. An application of neighbors in invariant theory

In this section, we investigate the invariant ring of weight enumera-
tors for Type II codes in genus g, with particular emphasis on identify-
ing the generators of the ring using the concept of neighbors. A binary
self-dual code C is called Type II if the weight of each codeword of C
is a multiple of 4. It is known that a Type II code of length n exists
if and only if n ≡ 0 (mod 8). There are 9 Type II codes of length 24
up to equivalence, denoted by Ci for i = 1, 2, . . . , 9. We present these
codes in Table 3. For detail discussion about Ci’s, we refer the reader
to [6, 15, 19].

By dn and d+
n , we denote the code with following generator matrices

for n ≡ 0 (mod 8):

dn :


11110000 · · · 0000
11001100 · · · 0000
11000011 · · · 0000

...
. . .

...
11000000 · · · 0011

 , d+
n :


11110000 · · · 0000
11001100 · · · 0000

...
. . .

...
11000000 · · · 0011
10101010 · · · 1010

 .
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In particular, d+
8 is denoted by e8. Additionally, g24 denotes the binary

Golay code of length 24, which is the unique Type II code of this length
that does not include any elements of weight 4, see [19].

Table 3. Classification of Type II codes of length 24

Code C1 C2 C3 C4 C5 C6 C7 C8 C9

Components d2
12 d10e

2
7 d3

8 d4
6 d24 d6

4 g24 d16e8 e3
8

Next we recall the definitions and known facts from invariant theory.
Here we prefer to denote an element of Fg2 by a column vector. Let C be
a Type II code of length n. Then the weight enumerator C in genus g
is:

W
(g)
C (xa : a ∈ Fg2) =

∑
u,v∈C

∏
a∈Fg

2

x

na


u1
...
ug


a ,

where na

u1
...
ug

 is the number of i such that

u1i
...
ugi

 = a. Now let us

use the following notations for various rings in our discussion:

B(g) : the ring of W
(g)
C , where C is Type II,

D(g) : the ring of W
(g)

d+n
, where n ≡ 0 (mod 8),

A(g) : the ring of W
(g)
C , where C is d+

n and its neighbors.

Clearly, D(g) ⊆ A(g) ⊆ B(g). Since B(g) and D(g) are finitely gener-
ated over C, see [9, 10], it follows that A(g) is as well. It is proved
in [10, Proposition 2] that D(1) = B(1), however D(2) is strictly smaller
than B(2). In this note, we would like to discuss on the ring A(g) of
weight enumerators of Type II code d+

n and its neighbors. Table 4 gives
neighbors of code d+

n for n = 8, 16, 24.

Table 4. d+
n and its neighbors up to length 24

Code Neighbors (up to equivalence)

e8 e8

d+
16 d+

16

d+
24 C1, C5, C8
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Now let us define following matrices in GL(2g,C):

Tg =

(
1 + i

2

)g (
(−1)(a,b)

)
a,b∈Fg

2

,

DS = diag(iS[a] for a ∈ Fg2),

where, S[a] := taSa for any symmetric g × g matrix S. Let

Gg := 〈Tg, DS, ζ8〉

be a subgroup of GL(2g,C) generated by Tg, DS and ζ8, where S runs
over all symmetric matrices of order g and ζ8 = e2πi/8 is the primitive
8th root of unity. The order of the group Gg for g = 1, 2, 3 are shown in
Table 5. The group Gg acts naturally on the polynomial ring C[xa] :=
C[xa : a ∈ Fg2]. We denote C[xa]

Gg the invariant ring under the action
of Gg.

Table 5. Order of Gg

g 1 2 3

|Gg| 192 92160 743178240

We recall [9, 11, 16] for the dimension formulae of the invariant ring
C[xa]

Gg for g = 1, 2, 3 as follows:

g = 1 :
1

(1− t8)(1− t24)
= 1 + t8 + t16 + 2t24 + · · · ,

g = 2 :
1 + t32

(1− t8)(1− t24)2(1− t40)
= 1 + t8 + t16 + 3t24 + · · · ,

g = 3 :
θ(t8) + t352θ(t−8)

(1− t8)(1− t16)(1− t24)2(1− t40)(1− t56)(1− t72)(1− t120)

= 1 + t8 + 2t16 + 5t24 + · · · .

where

θ(t) := 1 + t3 + 3t4 + 3t5 + 6t6 + 8t7 + 12t8 + 18t9 + 25t10

+ 29t11 + 40t12 + 50t13 + 58t14 + 69t15 + 80t16

+ 85t17 + 96t18 + 104t19 + 107t20 + 109t21 + 56t22.

It is known that the invariant ring C[xa]
Gg is generated by the weight

enumerators of Type II codes in genus g, see [9, 11, 21]. In particular,
a basis of the vector space generated by the weight enumerators of
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Type II code of length 24 in g = 1, 2, 3 is given below:

g = 1 : W
(1)
C9
,W

(1)
C7

g = 2 : W
(2)
C9
,W

(2)
C7
,W

(2)
C5

g = 3 : W
(3)
C9
,W

(3)
C7
,W

(3)
C5
,W

(3)
C8
,W

(3)
C1
.

It is can be seen from Table 3 that C5 is d+
24 itself. Moreover,

from Table 4 we have C1, C5 and C8 being the neighbors of d+
24.

Since W
(1)
C9

and W
(1)
C5

are algebraically independent, therefore we have

A(1) = C[W
(1)
e8 ,W

(1)

d+24
] = C[xa]

G1 .

The above discussions and [10, Proposition 2], conclude the following
result.

Theorem 7.1. D(1) = A(1) = B(1) up to the space of degree 24.

Theorem 7.2. D(2) ( A(2) = B(2) up to the space of degree 24.

Proof. The code d+
24 has a neighbor C1. From the dimension formula,

we know that the space of degree 24 in B(2) has dimension 3. Since

W
(2)
g24 /∈ A(2), it is enough to show that W

(2)
C1

belongs to the basis of the

space of degree 24 in A(2). Therefore, we consider the genus 2 weight
enumerators of e3

8, d+
24 and C1. We select the following monomials of

these weight enumerators:

αx24
0
0

, βx20
0
0
x4

0
1
, γx16

0
0
x8

0
1
,

where α, β and γ represent the coefficients of the monomials. Now we
construct the following 3× 3 matrix L consisting of the coefficients of
the aforementioned 3 monomials from the selected weight enumerators:

Code α β γ

e3
8 1 42 591

d+
24 1 66 495
C1 1 30 639

Immediately, Rank(L) = 3. It is known (see [9]) that the ring B(2) has
the following structure:

C[W (2)
e8
,W

(2)

d+24
,W (2)

g24
,W

(2)

d+40
]⊕ C[W (2)

e8
,W

(2)

d+24
,W (2)

g24
,W

(2)

d+40
]W

(2)

d+32
.

Since Rank(L) = 3, the weight enumerators of e3
8, d+

24 and C1 are
algebraically independent. Thus the space of degree 24 in A(2) is of
dimension 3 and is same as B(2). Moreover, D(2) ( B(2), see [10]. This
completes the proof. �
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Our computation shows that the dimensions and a basis of the spaces
of degrees 8, 16 and 24 in D(3) are as follows:

Table 6. Dimension and basis of D(3) up to length 24

Length Dimension Basis (up to equivalence)

8 1 e8

16 2 e2
8, d+

16

24 3 C9, C5, C8

Theorem 7.3. D(3) ( A(3) ( B(3) up to the space of degree 24.

Proof. From Table 4, we have C1, C5 and C8 are the neighbors of the

code d+
24. Clearly, C5 is d+

24 itself. Since W
(3)
C8

belongs to the basis of the

space of degree 24 in B(3), it follows that is true for A(3) as well. Since

W
(3)
g24 /∈ A(3), it is enough to show that W

(3)
C1

belongs to the basis of the

space of degree 24 in A(3). Therefore, we consider the genus 3 weight
enumerators of e3

8, d+
24, C8 and C1. We select the following monomials

of these weight enumerators:

αx20
0
0
0

x4
0
1
1

, βx16
0
1
0

x8
1
0
1

, γx8
0
0
1

x4
1
0
0

x12
1
1
0

, δx4
0
0
0

x2
0
1
0

x6
0
0
1

x6
1
0
0

x6
1
1
1

,

with α, β, γ, δ being the coefficients of the monomials. Now we con-
struct the following 4× 4 matrix M consisting of the coefficients of the
aforementioned 4 monomials from the selected weight enumerators:

Code α β γ δ
e3

8 42 591 9491 592704
d+

24 66 495 13860 110800
C8 42 591 9492 762048
C1 30 639 7020 659520

It is immediate that Rank(M) = 4. This means We38
,Wd+24

,WC8 ,WC1

are algebraically independent and form a dimension 4 vector space.
Thus the space of degree 24 in A(3) is of dimension 4 and hence it is
strictly smaller than B(3). Moreover, the space of degree 24 in D(3) is
of dimension 3 (see Table 6), This completes the proof. �
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