Centralizer Algebras of Two Permutation Groups of Order 1344

M. Kosuda¹, M. Oura², Sarbaini³

Abstract. There are two permutation groups that they share the same character table of order 1344. We take up natural representations on 8 and 14 letters respectively. The purpose of this paper is to examine the semi-simple structure of centralizing algebras in the tensor representation.

1. INTRODUCTION

Let H_1 be a complex reflection group of order 96, which is No. 8 in [6]. It is known that invariant algebra of H_1 is isomorphic to the sub algebra of modular forms for $SL_2(\mathbb{Z})$ using theta functions [2]. Also the invariant algebra of H_1 is a closely related to the algebra of weight enumerators of self-dual and doubly even codes [4]. In [5], we took up this important group H_1 and the centralizer algebras of the tensor representation of H_1 were determined. Additionally, in [3], the multi-matrix structures of the centralizer algebras of the tensor representations of a certain permutation group are discussed.

We continue this line. We take up two permutation groups of order 1344 which have the same character table (*cf.* [8]). Our groups in question are subgroups of the symmetric group of degree 8 and 14. The purpose of this note is to investigate the centralizer algebras of tensor representations of their permutation representations.

As usual, let \mathbb{C} denote the complex number field. We denote by M_d the matrix algebra of degree d over \mathbb{C} . For simplicity, let nM_d denote $\underbrace{M_d \oplus \cdots \oplus M_d}_{d}$.

n

2. PRELIMINARIES

Schur-Weyl's reciprocity is one the effective methods to find the structure of the centralizer algebra of representation V of an associative algebra. Suppose that a representation (ρ, V) of an associative algebra \mathcal{A} is decomposed into the irreducible ones V_i as follows:

$$V \cong \bigoplus_{i=1}^{s} m_i V_i$$

Here m_i is the multiplicity of the simple components V_i and s is the number of the essential irreducible representations. The $End_A(V)$, the centralizer algebra

²⁰²⁰ Mathematics Subject Classification: 20C05 and 20B35

Key words and Phrases: Centralizer Algebra, Permutation Group, Representation Theory, Group Theory, Group Algebra

of A with respect to the representation V is isomorphic to a direct sum of the endomorphism algebras \mathbb{C}^{m_i} .

$$End_A(V) \cong \bigoplus_i^s End_{\mathbb{C}}(\mathbb{C}^{m_i}) \cong \bigoplus_i^s Mat_{m_i}(\mathbb{C})$$

Thus to find the structure of the centralizer algebra. Let ${\cal G}$ be a subgroup of symmetric 8, generated by

$$(5,7)(6,8), (2,3,5)(4,7,6), (1,2)(3,4)(5,6)(7,8))(1,5)(2,6)(3,7)(4,8)$$

On the other hand H be a subgroup of symmetric 14, generated by

(1, 2, 3, 4, 5, 6)(14, 13, 12, 11, 10, 9, 8), (1, 4, 7, 9, 14, 11, 8, 6)(2, 5, 13, 10)

Both G and H are of order 1344. Let **X** be the character table and χ_G, χ_H a permutation character. We follow the character table of [8], but switch the 7th and 8th columns. The group G has the following 11 conjugacy classes.

Class	Size	Representative
\mathfrak{C}_1	1	1
\mathfrak{C}_2	7	(1,2)(3,4)(5,6)(7,8)
\mathfrak{C}_3	42	(1,5)(3,7)
\mathfrak{C}_4	42	(1,3)(2,8)(4,6)(5,7)
\mathfrak{C}_5	84	(1, 5, 2)(3, 8, 7)
\mathfrak{C}_6	168	(1, 2, 5, 6)(3, 4, 7, 8)
\mathfrak{C}_7	168	(1,5)(2,4,6,8)
\mathfrak{C}_8	224	(1, 2, 7, 4)(3, 8, 5, 6)
\mathfrak{C}_9	224	(1,7)(2,3,6,8,5,4)
\mathfrak{C}_{10}	192	(2, 7, 4, 8, 6, 5, 3)
\mathfrak{C}_{11}	192	(2, 8, 3, 4, 5, 7, 6)

Also the group H has the following 11 conjugacy classes.

Class	Size	Representative
\mathfrak{C}'_1	1	1
\mathfrak{C}_2'	7	(1, 14)(4, 11)(6, 9)(7, 8)
\mathfrak{C}_3'	42	(1, 7, 14, 8)(4, 6, 11, 9)
\mathfrak{C}_4'	42	(1, 7, 14, 8)(2, 13)(4, 9, 11, 6)(5, 10)
\mathfrak{C}_5'	84	(1, 10, 8)(3, 6, 11)(4, 12, 9)(5, 7, 14)
\mathfrak{C}_6'	168	(1,7)(3,12)(4,6)(5,10)(8,14)(9,11)
\mathfrak{C}_7'	168	(1, 4, 7, 6, 14, 11, 8, 9)(2, 5)(3, 12)(10, 13)
\mathfrak{C}'_8	224	(1, 4, 7, 9, 14, 11, 8, 6)(2, 5, 13, 10)
\mathfrak{C}_9'	224	(1, 5, 8, 14, 10, 7)(2, 13)(3, 6, 11)(4, 12, 9)
\mathfrak{C}_{10}'	192	(1, 2, 3, 4, 5, 6, 7)(8, 14, 13, 12, 11, 10, 9)
\mathfrak{C}'_{11}	192	(1, 4, 7, 3, 6, 2, 5)(8, 12, 9, 13, 10, 14, 11)

Suppose that $\chi_G^{\otimes k}$ and $\chi_H^{\otimes k}$ are decomposed into the irreducible characters as follows:

$$\chi_G^{\otimes k} = d_{G,1}^{(k)} \chi_1 + \dots + d_{G,11}^{(k)} \chi_{11} \quad \text{for } G$$

$$\chi_H^{\otimes k} = d_{H,1}^{(k)} \chi_1 + \dots + d_{H,11}^{(k)} \chi_{11} \quad \text{for } H.$$

We would like to find $d_G^{(k)}$ and $d_H^{(k)}$.

3. RESULTS

We follow the argument presented in the paper [8]. It is known that $\chi_G(g)$ (resp. $\chi_H(h)$) is the number of elements which are fixed by $g \in G$ (resp. $h \in H$).

Proposition 3.1. We have

$$\chi_G = \chi_1 + \chi_8,$$

$$\chi_H = \chi_1 + \chi_4 + \chi_7.$$

Proof. First we know the following.

	\mathfrak{C}_1	\mathfrak{C}_2	\mathfrak{C}_6	\mathfrak{C}_4	\mathfrak{C}_3	\mathfrak{C}_5	\mathfrak{C}_9	\mathfrak{C}_7	\mathfrak{C}_8	\mathfrak{C}_{10}	\mathfrak{C}_{11}
χ_G	8	0	0	0	4	2	0	2	0	1	1
	\mathfrak{C}'_1	\mathfrak{C}_2'	\mathfrak{C}_6'	\mathfrak{C}_3'	\mathfrak{C}'_4	\mathfrak{C}_5'	\mathfrak{C}_9'	\mathfrak{C}_7'	\mathfrak{C}_8'	\mathfrak{C}_{10}'	\mathfrak{C}_{11}'

For $d_G^{(1)} = \left(d_{G,1}^{(1)}, \dots, d_{G,11}^{(1)} \right)$ we have

$$(8,0,0,0,4,2,0,2,0,1,1) = \left(d_{G,1}^{(1)},\ldots,d_{G,11}^{(1)}\right) \mathbf{X}_{g}$$

and for $d_{H}^{(1)} = \left(d_{H,1}^{(1)}, \dots, d_{H,11}^{(1)} \right)$ we have

$$(14, 6, 2, 6, 2, 2, 0, 0, 2, 0, 0) = \left(d_{H,1}^{(1)}, \dots, d_{H,11}^{(1)}\right) \mathbf{X}.$$

Then we get

$$d_G^{(1)} = (8, 0, 0, 0, 4, 2, 0, 2, 0, 1, 1) \mathbf{X}^{-1}$$

= (1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)

and

$$d_{H}^{(1)} = (14, 6, 2, 6, 2, 2, 0, 0, 2, 0, 0)\mathbf{X}^{-1}$$

= (1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0).

This completes the proof.

Since χ_G is decomposed into the trivial character and one irreducible character, G is doubly transitive. On the other hand, χ_H is decomposed into the trivial character and two distinct non trivial irreducible characters. Hence H is not doubly transitive, see [7], [1]. Next we calculate $d_G^{(k)}$ and $d_H^{(k)}$.

a	æ	r	æ	æ	æ	æ	æ	æ	æ	(the second seco	(*
G	e_1	\mathfrak{e}_2	e_6	\mathfrak{e}_4	e_3	e_5	e ₉	e7	e ₈	e_{10}	e ₁₁
H	\mathfrak{C}'_1	\mathfrak{C}_2'	\mathfrak{C}_6'	\mathfrak{C}_3'	\mathfrak{C}'_4	\mathfrak{C}_5'	\mathfrak{C}_9'	\mathfrak{C}_7'	\mathfrak{C}_8'	\mathfrak{C}_{10}'	\mathfrak{C}_{11}'
$ C_G(g) $	1344	192	16	32	32	6	6	8	8	7	7
χ_1	1	1	1	1	1	1	1	1	1	1	1
χ_2	3	3	-1	-1	0	0	0	1	1	$\frac{-1+\sqrt{-7}}{2}$	$\frac{-1-\sqrt{-7}}{2}$
χ_3	3	3	-1	-1	0	0	0	1	1	$\frac{-1-\sqrt{-7}}{2}$	$\frac{-1+\sqrt{-7}}{2}$
χ_4	6	6	2	2	2	0	0	0	0	-1	2 -1
χ_5	7	7	-1	-1	-1	1	1	-1	-1	0	0
χ_6	8	8	0	0	0	-1	-1	0	0	1	1
χ_7	7	-1	-1	3	-1	1	-1	-1	1	0	0
χ_8	7	-1	-1	-1	3	1	-1	1	-1	0	0
χ_9	14	-2	-2	2	2	-1	1	0	0	0	0
χ_{10}	21	-3	1	1	-3	0	0	1	-1	0	0
χ_{11}	21	-3	1	-3	1	0	0	-1	1	0	0

Consider the following matrix A_G such that

$$\begin{pmatrix} \chi_1 \chi \\ \chi_2 \chi \\ \vdots \\ \chi_{11} \chi \end{pmatrix} = A_G \begin{pmatrix} \chi_1 \\ \chi_2 \\ \vdots \\ \chi_{11} \end{pmatrix}.$$

Then we have

$$\begin{pmatrix} \chi_1(\mathfrak{C}_i)\chi(\mathfrak{C}_i)\\ \chi_2(\mathfrak{C}_i)\chi(\mathfrak{C}_i)\\ \vdots\\ \chi_{11}(\mathfrak{C}_i)\chi(\mathfrak{C}_i) \end{pmatrix} = A_G \begin{pmatrix} \chi_1(\mathfrak{C}_i)\\ \chi_2(\mathfrak{C}_i)\\ \vdots\\ \chi_{11}(\mathfrak{C}_i) \end{pmatrix},$$

And for A_H we get

$$\begin{pmatrix} \chi_{1}(\mathfrak{C}_{1}') & \chi_{1}(\mathfrak{C}_{2}') & \chi_{1}(\mathfrak{C}_{6}') & \dots & \chi_{1}(\mathfrak{C}_{11}') \\ \chi_{2}(\mathfrak{C}_{1}') & \chi_{2}(\mathfrak{C}_{2}') & \chi_{2}(\mathfrak{C}_{6}') & \dots & \chi_{2}(\mathfrak{C}_{11}') \\ \chi_{3}(\mathfrak{C}_{1}') & \chi_{3}(\mathfrak{C}_{2}') & \chi_{3}(\mathfrak{C}_{6}') & \dots & \chi_{3}(\mathfrak{C}_{11}') \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \chi_{11}(\mathfrak{C}_{1}') & \chi_{11}(\mathfrak{C}_{2}') & \chi_{11}(\mathfrak{C}_{6}') & \dots & \chi_{11}(\mathfrak{C}_{11}') \end{pmatrix} \begin{pmatrix} \chi(\mathfrak{C}_{1}') & \chi(\mathfrak{C}_{2}') & & & \\ & \chi(\mathfrak{C}_{2}') & & & \\ & \chi(\mathfrak{C}_{3}') & & & \\ & & \ddots & & \\ & & & \chi(\mathfrak{C}_{11}') \end{pmatrix} \\ & = A_{H} \begin{pmatrix} \chi_{1}(\mathfrak{C}_{1}') \dots \chi_{1}(\mathfrak{C}_{11}') & & & \\ & & \chi(\mathfrak{C}_{11}') \end{pmatrix} .$$

Thus we have

$$\mathbf{X} diag(8, 0, 0, 0, 4, 2, 0, 2, 0, 1, 1) = A_G \mathbf{X}$$
$$A_G = \mathbf{X} diag(8, 0, 0, 0, 4, 2, 0, 2, 0, 1, 1) \mathbf{X}^{-1},$$

and

$$\mathbf{X} diag(14, 6, 2, 6, 2, 2, 0, 0, 2, 0, 0) = A_H \mathbf{X}$$
$$A_H = \mathbf{X} diag(14, 6, 2, 6, 2, 2, 0, 0, 2, 0, 0) \mathbf{X}^{-1}.$$

Therefore we have

$$\begin{aligned} d_G^{(k)} &= d_G^{k-1} A_G \\ &= d_G^{(1)} A_G^{k-1} \\ &= d_G^{(1)} X \left(diag(8,0,0,0,4,2,0,0,2,1,1) \right)^{k-1} X^{-1} \end{aligned}$$

Subsequently, we possess

$$a_{G,k} = \frac{2^{3k}}{1344} + \frac{2^{2k}}{32} + \frac{7}{24}2^k + \frac{2}{7},$$

$$b_{G,k} = \frac{2^{3k}}{448} - \frac{2^{2k}}{32} + \frac{2^k}{8} - \frac{1}{7},$$

$$c_{G,k} = \frac{2^{3k}}{448} - \frac{2^{2k}}{32} + \frac{2^k}{8} - \frac{1}{7},$$

$$d_{G,k} = \frac{2^{3k}}{224} + \frac{2^{2k}}{16} - \frac{2}{7},$$

$$e_{G,k} = \frac{2^{3k}}{192} - \frac{2^{2k}}{32} + \frac{2^k}{24},$$

$$f_{G,k} = \frac{2^{3k}}{168} - \frac{2^k}{6} + \frac{2}{7},$$

$$g_{G,k} = \frac{2^{3k}}{192} - \frac{2^{2k}}{32} + \frac{2^k}{24},$$

$$h_{G,k} = \frac{2^{3k}}{192} + \frac{3}{32}2^{2k} + \frac{7}{24}2^k,$$

$$i_{G,k} = \frac{2^{3k}}{96} + \frac{2^{2k}}{16} - \frac{2^k}{6},$$

$$j_{G,k} = \frac{2^{3k}}{64} - \frac{3}{32}2^{2k} + \frac{2^k}{8},$$

$$l_{G,k} = \frac{2^{3k}}{64} + \frac{2^{2k}}{32} - \frac{2^k}{8}.$$

and for χ_H

$$\begin{aligned} d_{H}^{(k)} &= d_{H}^{k-1} A_{H} \\ &= d_{H}^{(1)} A_{H}^{k-1} \\ &= d_{H}^{(1)} X \left(diag(14, 6, 2, 6, 2, 2, 0, 2, 0, 0, 0) \right)^{k-1} X^{-1} \end{aligned}$$

Afterwards

$$\begin{split} a_{H,k} &= 2^k \left(\frac{1}{1344} \cdot 7^k + \frac{7}{192} \cdot 3^k + \frac{37}{96} \right), \\ b_{H,k} &= 2^k \left(\frac{1}{448} \cdot 7^k - \frac{1}{64} \cdot 3^k + \frac{1}{32} \right), \\ c_{H,k} &= 2^k \left(\frac{1}{448} \cdot 7^k - \frac{1}{64} \cdot 3^k + \frac{1}{32} \right), \\ d_{H,k} &= 2^k \left(\frac{1}{224} \cdot 7^k + \frac{3}{32} \cdot 3^k + \frac{3}{16} \right), \\ e_{H,k} &= 2^k \left(\frac{1}{192} \cdot 7^k + \frac{1}{192} \cdot 3^k - \frac{5}{96} \right), \\ f_{H,k} &= 2^k \left(\frac{1}{168} \cdot 7^k + \frac{1}{24} \cdot 3^k - \frac{1}{6} \right), \\ g_{H,k} &= 2^k \left(\frac{1}{192} \cdot 7^k + \frac{17}{192} \cdot 3^k + \frac{19}{96} \right), \\ h_{H,k} &= 2^k \left(\frac{1}{192} \cdot 7^k - \frac{7}{192} \cdot 3^k + \frac{7}{96} \right), \\ i_{H,k} &= 2^k \left(\frac{1}{64} \cdot 7^k + \frac{5}{96} \cdot 3^k - \frac{11}{48} \right), \\ j_{H,k} &= 2^k \left(\frac{1}{64} \cdot 7^k + \frac{1}{64} \cdot 3^k - \frac{5}{32} \right), \\ l_{H,k} &= 2^k \left(\frac{1}{64} \cdot 7^k - \frac{7}{64} \cdot 3^k + \frac{7}{32} \right). \end{split}$$

Theorem 3.2. We have

$$\mathfrak{A}_{G}^{(k)} \cong \begin{cases} 2M_{1} \\ M_{a_{G,k}} \oplus 2M_{b_{G,k}} \oplus M_{d_{G,k}} \oplus 2M_{e_{G,k}} \oplus M_{f_{G,k}} \oplus M_{h_{G,k}} \oplus M_{i_{G,k}} \oplus M_{j_{G,k}} \oplus M_{l_{G,k}} \end{cases}$$

$$and \mathfrak{A}_{H}^{(k)} \cong \begin{cases} 3M_{1} \\ M_{a_{H,k}} \oplus 2M_{b_{H,k}} \oplus M_{d_{H,k}} \oplus M_{e_{H,k}} \oplus M_{f_{H,k}} \oplus M_{g_{H,k}} \oplus M_{h_{H,k}} \oplus M_{i_{H,k}} \oplus M_{i_{H,k}} \oplus M_{l_{H,k}} \end{cases}$$
where

 $a_{G,k}, b_{G,k}, c_{G,k}, d_{G,k}, e_{G,k}, f_{G,k}, g_{G,k}, h_{G,k}, i_{G,k}, j_{G,k}, l_{G,k}$

and

$$a_{H,k}, b_{H,k}, c_{H,k}, d_{H,k}, e_{H,k}, f_{H,k}, g_{H,k}, h_{H,k}, i_{H,k}, j_{H,k}, l_{H,k}$$

are given above.

Corollary 3.3. We have

$$\dim \mathfrak{A}_G^{(k)} = \frac{1}{1344} \cdot 2^{6k} + \frac{1}{32} \cdot 2^{4k} + \frac{7}{24} \cdot 2^{2k} + \frac{2}{7}$$

and

8

$$\dim \mathfrak{A}_{H}^{(k)} = 2^{2k} \left(\frac{1}{1344} \cdot 7^{2k} + \frac{7}{192} \cdot 3^{2k} + \frac{37}{96} \right).$$

The second assertion of Corollary 3.3 is obtained by taking the square sum of the dimensions of the simple components. We conclude this paper with a small table of dim \mathfrak{A} .

	1	2	3	4	5	6
$\dim\mathfrak{A}_G^{(k)}$	2	16	342	14606	831982	51656046
$\dim\mathfrak{A}_{H}^{(k)}$	3	82	7328	1159392	217424128	42262333952

ACKNOWLEDGMENTS

This work was supported by JSPS KAKENHI Grant Numbers 24K06827 and 24K06644. The third named author of this work was supported in part by Ministry of Religious Affairs (BIB) and the Indonesia Endowment Fund for Education (LPDP) of the Ministry of Finance of the Republic of Indonesia.

REFERENCES

- [1] Bannai, E., Ito, T., Algebraic Combinatorics I: Association Schemes, Benjamin (1984).
- [2] Broué, M., Enguehard, M., Polynomes des poids de certains codes et fonctions thota de certains reseaux, Ann. Sci. Ecole Norm. Sup. (4) 5 (1972), 157-181.
- [3] Imamura, H., Kosuda, M., Oura, M., Note on the permutation group associated to Epolynomials, J. Algebra Comb. Discrete Appl (2021), no 9, 1-7.
- [4] Gleason, A.M., Weight polynomials of self-dual codes and the MacWilliams identities, Actes du Congres International des Mathematiciens (Nice, 1970), Tome 3, pp. 211-215. Gauthier-Villars. Paris, 1971.
- [5] Kosuda, M., Oura, M., On the centralizer algebras of the primitive unitary reflection group of order 96, Tokyo J. Math. 39 (2016), no. 2, 469-482.
- [6] Shephard, G.C., Todd, J. A., Finite unitary reflection groups, Canadian J. Math., 6, (1954), 274-304.
- [7] Wielandt, H., Finite permutation groups, Academic Press, New York-London 1964.
- [8] Yoshiara, S, An Example of Non-isomorphic Group Association Schemes with the same Parameters, Europ. J. Combinatorics (1997), no 18, 721-738.

Faculty of Engineering, University of Yamanashi, 400-8511, Japan *email address*: mkosuda@yamanashi.ac.jp

Institute of Science and Engineering, Kanazawa University, Ishikawa, 920-1192, Japan

email address: oura@se.kanazawa-u.ac.jp

Department of Mathematics, Universitas Islam Negeri Sultan Syarif Kasim Riau, Indonesia

and

Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa, 920-1192, Japan email address: sarbaini@stu.kanazawa-u.ac.jp