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Centralizer Algebras of Two Permutation Groups of Order

1344

M. Kosuda1, M. Oura2, Sarbaini3

Abstract. There are two permutation groups that they share the same charac-

ter table of order 1344. We take up natural representations on 8 and 14 letters

respectively. The purpose of this paper is to examine the semi-simple structure of

centralizing algebras in the tensor representation.

1. INTRODUCTION

Let H1 be a complex reflection group of order 96, which is No. 8 in [6]. It
is known that invariant algebra of H1 is isomorphic to the sub algebra of modular
forms for SL2(Z) using theta functions [2]. Also the invariant algebra of H1 is a
closely related to the algebra of weight enumerators of self-dual and doubly even
codes [4]. In [5], we took up this important group H1 and the centralizer alge-
bras of the tensor representation of H1 were determined. Additionally, in [3], the
multi-matrix structures of the centralizer algebras of the tensor representations of
a certain permutation group are discussed.

We continue this line. We take up two permutation groups of order 1344 which
have the same character table (cf. [8]). Our groups in question are subgroups of the
symmetric group of degree 8 and 14 . The purpose of this note is to investigate the
centralizer algebras of tensor representations of their permutation representations.

As usual, let C denote the complex number field. We denote by Md the
matrix algebra of degree d over C. For simplicity, let nMd denote Md ⊕ · · · ⊕Md

︸ ︷︷ ︸

n

.

2. PRELIMINARIES

Schur-Weyl’s reciprocity is one the effective methods to find the structure of
the centralizer algebra of representation V of an associative algebra. Suppose that a
representation (ρ, V ) of an associative algebra A is decomposed into the irreducible
ones Vi as follows:

V ∼=
s⊕

i

miVi

Here mi is the multiplicity of the simple components Vi and s is the number of
the essential irreducible representations. The EndA(V ), the centralizer algebra
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of A with respect to the representation V is isomorphic to a direct sum of the
endomorphism algebras Cmi .

EndA(V ) ∼=
s⊕

i

EndC(C
mi) ∼=

s⊕

i

Matmi
(C)

Thus to find the structure of the centralizer algebra. Let G be a subgroup of
symmetric 8, generated by

(5, 7)(6, 8), (2, 3, 5)(4, 7, 6), (1, 2)(3, 4)(5, 6)(7, 8))(1, 5)(2, 6)(3, 7)(4, 8)

On the other hand H be a subgroup of symmetric 14, generated by

(1, 2, 3, 4, 5, 6)(14, 13, 12, 11, 10, 9, 8), (1, 4, 7, 9, 14, 11, 8, 6)(2, 5, 13, 10)

Both G and H are of order 1344. Let X be the character table and χG, χH a
permutation character. We follow the character table of [8], but switch the 7th and
8th columns. The group G has the following 11 conjugacy classes.

Class Size Representative
C1 1 1
C2 7 (1, 2)(3, 4)(5, 6)(7, 8)
C3 42 (1, 5)(3, 7)
C4 42 (1, 3)(2, 8)(4, 6)(5, 7)
C5 84 (1, 5, 2)(3, 8, 7)
C6 168 (1, 2, 5, 6)(3, 4, 7, 8)
C7 168 (1, 5)(2, 4, 6, 8)
C8 224 (1, 2, 7, 4)(3, 8, 5, 6)
C9 224 (1, 7)(2, 3, 6, 8, 5, 4)
C10 192 (2, 7, 4, 8, 6, 5, 3)
C11 192 (2, 8, 3, 4, 5, 7, 6)

Also the group H has the following 11 conjugacy classes.

Class Size Representative
C′
1 1 1

C′
2 7 (1, 14)(4, 11)(6, 9)(7, 8)

C′
3 42 (1, 7, 14, 8)(4, 6, 11, 9)

C
′
4 42 (1, 7, 14, 8)(2, 13)(4, 9, 11, 6)(5, 10)

C′
5 84 (1, 10, 8)(3, 6, 11)(4, 12, 9)(5, 7, 14)

C′
6 168 (1, 7)(3, 12)(4, 6)(5, 10)(8, 14)(9, 11)

C′
7 168 (1, 4, 7, 6, 14, 11, 8, 9)(2, 5)(3, 12)(10, 13)

C′
8 224 (1, 4, 7, 9, 14, 11, 8, 6)(2, 5, 13, 10)

C′
9 224 (1, 5, 8, 14, 10, 7)(2, 13)(3, 6, 11)(4, 12, 9)

C′
10 192 (1, 2, 3, 4, 5, 6, 7)(8, 14, 13, 12, 11, 10, 9)

C′
11 192 (1, 4, 7, 3, 6, 2, 5)(8, 12, 9, 13, 10, 14, 11)



Centralizer Algebras of Two Permutation Groups of Order 1344 3

Suppose that χ⊗k
G and χ⊗k

H are decomposed into the irreducible characters as follows:

χ⊗k
G = d

(k)
G,1χ1 + · · ·+ d

(k)
G,11χ11 for G

χ⊗k
H = d

(k)
H,1χ1 + · · ·+ d

(k)
H,11χ11 for H.

We would like to find d
(k)
G and d

(k)
H .

3. RESULTS

We follow the argument presented in the paper [8]. It is known that χG(g)
(resp. χH(h)) is the number of elements which are fixed by g ∈ G (resp. h ∈ H).

Proposition 3.1. We have

χG = χ1 + χ8,

χH = χ1 + χ4 + χ7.

Proof. First we know the following.

C1 C2 C6 C4 C3 C5 C9 C7 C8 C10 C11

χG 8 0 0 0 4 2 0 2 0 1 1
C
′
1 C

′
2 C

′
6 C

′
3 C

′
4 C

′
5 C

′
9 C

′
7 C

′
8 C

′
10 C

′
11

χH 14 6 2 6 2 2 0 0 2 0 0

For d
(1)
G =

(

d
(1)
G,1, . . . , d

(1)
G,11

)

we have

(8, 0, 0, 0, 4, 2, 0, 2, 0, 1, 1) =
(

d
(1)
G,1, . . . , d

(1)
G,11

)

X,

and for d
(1)
H =

(

d
(1)
H,1, . . . , d

(1)
H,11

)

we have

(14, 6, 2, 6, 2, 2, 0, 0, 2, 0, 0) =
(

d
(1)
H,1, . . . , d

(1)
H,11

)

X.

Then we get

d
(1)
G = (8, 0, 0, 0, 4, 2, 0, 2, 0, 1, 1)X−1

= (1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)

and

d
(1)
H = (14, 6, 2, 6, 2, 2, 0, 0, 2, 0, 0)X−1

= (1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0).

This completes the proof. �

Since χG is decomposed into the trivial character and one irreducible charac-
ter, G is doubly transitive. On the other hand, χH is decomposed into the trivial
character and two distinct non trivial irreducible characters. Hence H is not doubly

transitive, see [7], [1]. Next we calculate d
(k)
G and d

(k)
H .
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G C1 C2 C6 C4 C3 C5 C9 C7 C8 C10 C11

H C′
1 C′

2 C′
6 C′

3 C′
4 C′

5 C′
9 C′

7 C′
8 C′

10 C′
11

|CG(g)| 1344 192 16 32 32 6 6 8 8 7 7
χ1 1 1 1 1 1 1 1 1 1 1 1

χ2 3 3 −1 −1 0 0 0 1 1
−1 +

√
−7

2

−1−
√
−7

2

χ3 3 3 −1 −1 0 0 0 1 1
−1−

√
−7

2

−1 +
√
−7

2
χ4 6 6 2 2 2 0 0 0 0 −1 −1
χ5 7 7 −1 −1 −1 1 1 −1 −1 0 0
χ6 8 8 0 0 0 −1 −1 0 0 1 1
χ7 7 −1 −1 3 −1 1 −1 −1 1 0 0
χ8 7 −1 −1 −1 3 1 −1 1 −1 0 0
χ9 14 −2 −2 2 2 −1 1 0 0 0 0
χ10 21 −3 1 1 −3 0 0 1 −1 0 0
χ11 21 −3 1 −3 1 0 0 −1 1 0 0

Consider the following matrix AG such that







χ1χ

χ2χ
...

χ11χ








= AG








χ1

χ2

...
χ11








.

Then we have







χ1(Ci)χ(Ci)
χ2(Ci)χ(Ci)

...
χ11(Ci)χ(Ci)








= AG








χ1(Ci)
χ2(Ci)

...
χ11(Ci)








,










χ1(C1) χ1(C2) χ1(C6) . . . χ1(C11)
χ2(C1) χ2(C2) χ2(C6) . . . χ2(C11)
χ3(C1) χ3(C2) χ3(C6) . . . χ3(C11)

...
...

...
. . .

...
χ11(C1) χ11(C2) χ11(C6) . . . χ11(C11)





















χ(C1)
χ(C2)

χ(C6)
χ(C4)

. . .

χ(C11)












= AG






χ1(C1) . . . χ1(C11)
...

χ11(C1) . . . χ11(C11)




 .
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And for AH we get










χ1(C
′
1) χ1(C

′
2) χ1(C

′
6) . . . χ1(C

′
11)

χ2(C
′
1) χ2(C

′
2) χ2(C

′
6) . . . χ2(C

′
11)

χ3(C
′
1) χ3(C

′
2) χ3(C

′
6) . . . χ3(C

′
11)

...
...

...
. . .

...
χ11(C

′
1) χ11(C

′
2) χ11(C

′
6) . . . χ11(C

′
11)





















χ(C′
1)

χ(C′
2)

χ(C′
6)

χ(C′
3)

. . .

χ(C′
11)












= AH






χ1(C
′
1) . . . χ1(C

′
11)

...
χ11(C

′
1) . . . χ11(C

′
11)




 .

Thus we have

Xdiag(8, 0, 0, 0, 4, 2, 0, 2, 0, 1, 1) = AGX

AG = Xdiag(8, 0, 0, 0, 4, 2, 0, 2, 0, 1, 1)X−1,

and

Xdiag(14, 6, 2, 6, 2, 2, 0, 0, 2, 0, 0) = AHX

AH = Xdiag(14, 6, 2, 6, 2, 2, 0, 0, 2, 0, 0)X−1.

Therefore we have

d
(k)
G = dk−1

G AG

= d
(1)
G Ak−1

G

= d
(1)
G X (diag(8, 0, 0, 0, 4, 2, 0, 0, 2, 1, 1))

k−1
X−1
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Subsequently, we possess

aG,k =
23k

1344
+

22k

32
+

7

24
2k +

2

7
,

bG,k =
23k

448
− 22k

32
+

2k

8
− 1

7
,

cG,k =
23k

448
− 22k

32
+

2k

8
− 1

7
,

dG,k =
23k

224
+

22k

16
− 2

7
,

eG,k =
23k

192
− 22k

32
+

2k

24
,

fG,k =
23k

168
− 2k

6
+

2

7
,

gG,k =
23k

192
− 22k

32
+

2k

24
,

hG,k =
23k

192
+

3

32
22k +

7

24
2k,

iG,k =
23k

96
+

22k

16
− 2k

6
,

jG,k =
23k

64
− 3

32
22k +

2k

8
,

lG,k =
23k

64
+

22k

32
− 2k

8
.

and for χH

d
(k)
H = dk−1

H AH

= d
(1)
H Ak−1

H

= d
(1)
H X (diag(14, 6, 2, 6, 2, 2, 0, 2, 0, 0, 0))

k−1
X−1
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Afterwards

aH,k = 2k
(

1

1344
· 7k + 7

192
· 3k + 37

96

)

,

bH,k = 2k
(

1

448
· 7k − 1

64
· 3k + 1

32

)

,

cH,k = 2k
(

1

448
· 7k − 1

64
· 3k + 1

32

)

,

dH,k = 2k
(

1

224
· 7k + 3

32
· 3k + 3

16

)

,

eH,k = 2k
(

1

192
· 7k + 1

192
· 3k − 5

96

)

,

fH,k = 2k
(

1

168
· 7k + 1

24
· 3k − 1

6

)

,

gH,k = 2k
(

1

192
· 7k + 17

192
· 3k + 19

96

)

,

hH,k = 2k
(

1

192
· 7k − 7

192
· 3k + 7

96

)

,

iH,k = 2k
(

1

96
· 7k + 5

96
· 3k − 11

48

)

,

jH,k = 2k
(

1

64
· 7k + 1

64
· 3k − 5

32

)

,

lH,k = 2k
(

1

64
· 7k − 7

64
· 3k + 7

32

)

.

Theorem 3.2. We have

A
(k)
G

∼=
{

2M1

MaG,k
⊕ 2MbG,k

⊕MdG,k
⊕ 2MeG,k

⊕MfG,k
⊕MhG,k

⊕MiG,k
⊕MjG,k

⊕MlG,k

and A
(k)
H

∼=
{

3M1

MaH,k
⊕ 2MbH,k

⊕MdH,k
⊕MeH,k

⊕MfH,k
⊕MgH,k

⊕MhH,k
⊕MiH,k

⊕MjH,k
⊕MlH,k

where

aG,k, bG,k, cG,k, dG,k, eG,k, fG,k, gG,k, hG,k, iG,k, jG,k, lG,k

and

aH,k, bH,k, cH,k, dH,k, eH,k, fH,k, gH,k, hH,k, iH,k, jH,k, lH,k

are given above.

Corollary 3.3. We have

dimA
(k)
G =

1

1344
· 26k + 1

32
· 24k + 7

24
· 22k + 2

7
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and

dimA
(k)
H = 22k

(
1

1344
· 72k + 7

192
· 32k + 37

96

)

.

The second assertion of Corollary 3.3 is obtained by taking the square sum
of the dimensions of the simple components. We conclude this paper with a small
table of dim A.

1 2 3 4 5 6

dimA
(k)
G 2 16 342 14606 831982 51656046

dimA
(k)
H 3 82 7328 1159392 217424128 42262333952
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