Centralizer algebras of two permutation groups of order 1344,
by M. Kosuda, M. Oura, Sarbaini arXiv
accepted for publication in Nihonkai Mathematical Journal

Weight Enumerators of codes over F2 and over Z4,
By A.K.M. Selim Reza, Manabu Oura, Nur Hamid arXiv
accepted for publication in Interdisciplinary Information Sciences

[41] H. S. Chakraborty, N. Hamid, T. Miezaki, M. Oura
Jacobi polynomials, invariant rings, and generalized t-designs arXiv
Discrete Math. 348 (2025), no. 6, Paper No. 114447, 14 pp.

[40] H. S. Chakraborty, T. Miezaki, M. Oura
On the cycle index and the weight enumerator II arXiv
Journal of Algebra and Its Applications Vol. 23, No. 13 (2024) 2450235 (24 pages)
https://doi.org/10.1142/S0219498824502359

[39] S. Nagaoka and M. Oura
Note on the Type II codes of length $24$ [pdf]
Kumamoto J. Math. 37 (2024, April), 1-9.

[38] M. Oura, J. Sekiguchi
Basic Invariants of the Complex Reflection Group No.34 Constructed by Conway and Sloane [pdf]
Nihonkai Math. J. Vol. 34 (2023), 19-37.

[37] H. S. Chakraborty, T. Miezaki, M. Oura
Harmonic Tutte polynomials of matroids [pdf]
Des. Codes Cryptogr. 91 (2023), no. 6, 2223-2236.
https://doi.org/10.1007/s10623-023-01196-7

[36] H. S. Chakraborty, T. Miezaki, M. Oura, and Y. Tanaka
Jacobi polynomials and design theory I [pdf]
Discrete Math. 346 (2023, June), no. 6, Paper No. 113339.
https://doi.org/10.1016/j.disc.2023.113339

[35] H. S. Chakraborty, T. Miezaki, M. Oura
Weight enumerators, intersection enumerators and Jacobi polynomials II [pdf]
Discrete Math. 345 (2022, December), no. 12, Paper No. 113098.
https://doi.org/10.1016/j.disc.2022.113098

[34] H. Imamura, M. Kosuda, M. Oura
Note on the permutation group associated to E-polynomials [pdf]
Journal of Algebra Combinatorics Discrete Structures and Applications, volume 9 issue 1 (2022, January), 1-7.
Matrices
https://doi.org/10.13069/jacodesmath.1056485

[33] E. Bannai, M. Oura, D. Zhao,
The complex conjugate invariants of Clifford groups [pdf]
Des. Codes Cryptogr. 89 (2021, February), no. 2, 341-350.
https://doi.org/10.1007/s10623-020-00819-7

[32] N. Hamid, M. Kosuda, M. Oura
Certain subrings in classical invariant theory [pdf]
Toyama Mathematical Journal, 40 (2020), 33-44.

[31] K. Honma, T. Okabe, M. Oura
Weight enumerator, intersection enumerator and Jacobi polynomial [pdf]
Discrete Math. 343 (2020, June), no. 6, 111815, 12 pp.
https://doi.org/10.1016/j.disc.2020.111815

[30] T. Miezaki, M. Oura,
On Eisenstein polynomials and zeta polynomials II [pdf]
Int. J. Number Theory 16, No. 1, 2020(February), 207-218.
https://doi.org/10.1142/S1793042120500116

[29] T. Miezaki, M. Oura, T. Sakuma, H. Shinohara
A generalization of the Tutte polynomials [pdf]
Proc. Japan Acad. Ser. A Math. Sci. 95 (2019), no. 10, 111-113.
doi:10.3792/pjaa.95.111

[28] T. Miezaki, M. Oura
On the cycle index and the weight enumerator [pdf]
Des. Codes Cryptogr. 87, no. 6, (2019, June), 1237-1242.
https://doi.org/10.1007/s10623-018-0518-x

[27] N. Hamid, M. Oura
Terwilliger algebras of some group association schemes
Math. J. Okayama Univ. 61 (2019, January), 199-204.

[26] M. Fujii, M. Oura
Ring of the weight enumerators of d_n^+ [pdf]
Tsukuba J. of Math. 42(2018, July), no.1, 53-63.
doi:10.21099/tkbjm/1541559648

[25] T. Motomura, M. Oura
E-polynomials associated to $\mathbf{Z}_4$-codes [pdf]
Hokkaido Math. J. 47(2018), no.2, 339-350.
doi:10.14492/hokmj/1529308822

[24] M. Kosuda, M. Oura
Centralizer algebras of the group associated to ${\Z}_4$-codes [pdf]
Discrete Math. 340 (2017, October), no. 10, 2437-2446.
DOI: 10.1016/j.disc.2017.06.001

[23] M. Kosuda, M. Oura
Centralizer algebras of the primitive unitary reflection group of order 96 [pdf] OEIS
Tokyo J. Math. 39 (2016, December), no. 2, 469-482.

[22] M. Oura, M. Ozeki
A numerical study of Siegel theta series of various degrees for the 32-dimensional even unimodular extremal lattices pdf
Kyushu J. Math. 70 (2016, October), no. 2, 281-314.

[21] M. Oura, M. Ozeki
Distinguishing Siegel theta series of degree 4 for the 32-dimensional even unimodular extremal lattices
Abh. Math. Semin. Univ. Hambg. 86 (2016, March), no. 1, 19-53.

[20] M. Oura
Eisenstein polynomials associated to binary codes (II) [pdf]
Kochi J. Math. 11 (2016, March), 35-41.

[19] M. Oura, C. Poor, R. Salvati Manni, D. Yuen
Modular gorms of weight $8$ for $\Gamma_g(1,2)$ [pdf]
Math.Ann. 346(2010, February), 477-498.
c_0=-3/(2^(15)*7)

[18] M. Oura
Eisenstein polynomials associated to binary codes
Int. J. Number Theory 5(2009), no.4, 635-640. [pdf]

[17] M. Oura, R. Salvati Manni
On the image of code polynomials under theta map
J. Math. Kyoto Univ. 48-4(2008), 895-906. [pdf]

[16] M. Oura
On the integral ring spanned by genus two weight enumerators
Discrete Math. 308(2008), 3722-3725. [pdf]

[15] M. Oura, C. Poor, D. Yuen
Towards the Siegel ring in genus four
Int. J. Number Theory 4(2008), no.4, 563-586. [pdf]

[14] Y. Choie, M. Oura
The joint weight enumerators and Siegel modular forms
Proc. Amer. Math. Soc. 134 (2006), 2711-2718. [pdf]

[13] S. T. Dougherty, T. A. Gulliver, M. Oura
Higher weights for ternary and quaternary self-dual codes
Des. Codes Cryptogr. 38 (2006), no. 1, 97--112. [pdf]

[12] M. Oura
Observation on the weight enumerators from classical invariant theory
Comment. Math. Univ. St. Pauli, Vol. 54 (2005), No.1, 1-15. [pdf]

[11] M. Oura
An example of an infinitely generated graded ring motivated by coding theory
Proc. Japan Acad., 79, Ser.A (2003), 134-135. [pdf]

[10] E. Bannai, M. Harada, T. Ibukiyama, A. Munemasa, M. Oura
Type II codes over F2 + u F2 and applications to Hermitian modular forms
Abh. Math. Sem. Univ. Hamburg 73 (2003), 13--42. [pdf]

[9] S. T. Dougherty, T. A. Gulliver, M. Oura
Higher weights and graded rings for binary self-dual codes
Discrete Appl. Math. 128 (2003), no. 1, 121-143. [pdf]

[8] S. T. Dougherty, M. Harada, M. Oura
Note on the g-fold joint enumerators of self-dual codes over Zk
Appl. Algebra Engrg. Comm. Comput. 11(2001) 6, 437-445. [pdf]

[7] E. Freitag, M. Oura
A theta relation in genus 4
Nagoya Math. J. 161(2001), 69-83. [pdf]

[6] M. Oura
Codes et formes paramodulaires
C.R.Acad.Sci.Paris., t. 328, Serie I, 843-846, 1999. [pdf]

[5] M. Harada, M. Oura
On the Hamming weight enumerators of self-dual codes over Zk
Finite Fields and Their Appl. 5 (1999), 26-34. [pdf]

[4] E. Bannai, S. T. Dougherty, M. Harada, M. Oura
Type II codes, even unimodular lattices and invariant rings
IEEE Trans. Inform. Theory, vol 45, No.4(1999), 1194-1205. [pdf]
see Young Ho Park, Modular independence and generator matrices for codes over Zm, Des. Codes Cryptogr. 50(2009), no.2, 147--162.

[3] M. Oura
The dimension formula for the ring of code polynomials in genus 4
Osaka J.Math., 34 (1997), 53-72. [pdf]
in the published version, the coeff of t^(72) in Theorem 4.1 at p.70 is 5845, not 5485.
OEIS

[2] M. Oura
Molien series related to certain finite unitary reflection groups
Kyushu J.Math., vol 50, No.2(1996), 297-310. [pdf]

[1] P. Balmaceda, M. Oura,
The Terwilliger algebras of the group association schemes of S5 and A5
Kyushu J.Math. vol 48, No.2(1994), 221-231. [pdf]