T.Miezaki, M.Oura | |

On the cycle index and the weight enumerator [pdf] | |

accepted for publication in Des. Codes Cryptogr. |

M.Fujii, M.Oura | |

Ring of the weight enumerators of d_n^+ [pdf] | |

accepted for publication in Tsukuba Journal of Mathematics. |

[25] | T.Motomura, M.Oura |

E-polynomials associated to $\mathbf{Z}_4$-codes [pdf] | |

Hokkaido Mathematical Journal. 47(2018), no.2, 339-350. |

[24] | M.Kosuda, M.Oura |

Centralizer algebras of the group associated to ${\Z}_4$-codes [pdf] | |

Discrete Math. 340 (2017, October), no. 10, 2437-2446. |

[23] | M.Kosuda, M.Oura |

Centralizer algebras of the primitive unitary reflection group of order 96 [pdf] OEIS | |

Tokyo J. Math. 39 (2016, December), no. 2, 469-482. |

[22] | M.Oura, M.Ozeki |

A numerical study of Siegel theta series of various degrees for the 32-dimensional even unimodular extremal lattices pdf | |

Kyushu J. Math. 70 (2016, October), no. 2, 281-314. |

[21] | M.Oura, M.Ozeki |

Distinguishing Siegel theta series of degree 4 for the 32-dimensional even unimodular extremal lattices | |

Abh. Math. Semin. Univ. Hambg. 86 (2016, March), no. 1, 19-53. |

[20] | M.Oura |

Eisenstein polynomials associated to binary codes (II) [pdf] | |

Kochi J. Math. 11 (2016, March), 35-41. |

[19] | M.Oura, C.Poor, R.Salvati Manni, D.Yuen |

Modular Forms of weight $8$ for $\Gamma_g(1,2)$ [pdf] | |

Math.Ann. 346(2010, February), 477-498. | |

c_0=-3/(2^(15)*7) |

[18] | M.Oura |

Eisenstein polynomials associated to binary codes | |

Int. J. Number Theory 5(2009), no.4, 635-640. [pdf] |

[17] | M.Oura, R.Salvati Manni |

On the image of code polynomials under theta map | |

J. Math. Kyoto Univ. 48-4(2008), 895-906. [pdf] |

[16] | M.Oura |

On the integral ring spanned by genus two weight enumerators | |

Discrete Math. 308(2008), 3722-3725. [pdf] |

[15] | M.Oura, C.Poor, D.Yuen |

Towards the Siegel ring in genus four | |

Int. J. Number Theory 4(2008), no.4, 563-586. [pdf] |

[14] | Y.Choie, M.Oura |

The joint weight enumerators and Siegel modular forms | |

Proc. Amer. Math. Soc. 134 (2006), 2711-2718. [pdf] |

[13] | S.T.Dougherty, T.A.Gulliver, M.Oura |

Higher weights for ternary and quaternary self-dual codes | |

Des. Codes Cryptogr. 38 (2006), no. 1, 97--112. [pdf] |

[12] | M.Oura |

Observation on the weight enumerators from classical invariant theory | |

Comment. Math. Univ. St. Pauli, Vol. 54 (2005), No.1, 1-15. [pdf] |

[11] | M.Oura |

An example of an infinitely generated graded ring motivated by coding theory | |

Proc. Japan Acad., 79, Ser.A (2003), 134-135. [pdf] |

[10] | E.Bannai, M.Harada, T.Ibukiyama, A.Munemasa, M.Oura |

Type II codes over F2 + u F2 and applications to Hermitian modular forms | |

Abh. Math. Sem. Univ. Hamburg 73 (2003), 13--42. [pdf] |

[9] | S.T.Dougherty, T.A.Gulliver, M.Oura |

Higher weights and graded rings for binary self-dual codes | |

Discrete Appl. Math. 128 (2003), no. 1, 121-143. [pdf] |

[8] | S.T.Dougherty, M.Harada, M.Oura |

Note on the g-fold joint enumerators of self-dual codes over Zk | |

Appl. Algebra Engrg. Comm. Comput. 11(2001) 6, 437-445. [pdf] |

[7] | E.Freitag, M.Oura |

A theta relation in genus 4 | |

Nagoya Math. J. 161(2001), 69-83. [pdf] |

[6] | M.Oura |

Codes et formes paramodulaires | |

C.R.Acad.Sci.Paris., t. 328, Serie I, 843-846, 1999. [pdf] |

[5] | M.Harada, M.Oura |

On the Hamming weight enumerators of self-dual codes over Zk | |

Finite Fields and Their Appl. 5 (1999), 26-34. [pdf] |

[4] | E.Bannai, S.T.Dougherty, M.Harada, M.Oura |

Type II codes, even unimodular lattices and invariant rings | |

IEEE Trans. Inform. Theory, vol 45, No.4(1999), 1194-1205. [pdf] | |

see Young Ho Park, Modular independence and generator matrices for codes over Zm, Des. Codes Cryptogr. 50(2009), no.2, 147--162. |

[3] | M.Oura |

The dimension formula for the ring of code polynomials in genus 4 | |

Osaka J.Math., 34 (1997), 53-72. [pdf] | |

in the published version, the coeff of t^(72) in Theorem 4.1 at p.70 is 5845, not 5485. | |

OEIS |

[2] | M.Oura |

Molien series related to certain finite unitary reflection groups | |

Kyushu J.Math., vol 50, No.2(1996), 297-310. [pdf] |

[1] | P.Balmaceda, M.Oura, |

The Terwilliger algebras of the group association schemes of S5 and A5 | |

Kyushu J.Math. vol 48, No.2(1994), 221-231. [pdf] |